

TERMS AND CONDITIONS OF SALE AND LICENSE OF TANDY COMPUTER EQUIPMENT AND SOFTWARE PURCHASED
FROM RADIQ SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND RADIO SHACK FRANCHISEES OR
DEALERS AT THEIR AUTHORIZED LOCATIONS

LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A, CUSTOMER assumes full responsibitity that this computer nardware purchased (the “Equipment”), and any copies of suftware included with the
Equipment or ficensed separately (the “Software”) meets the specifications, capacity, capabifities, versatiiity, and offer requirements of CUSTOMER.

B. CUSTOMER assumes fult responsibifity for the condition and sffsctiveness of the operating environment in which the Equipment ani Seftware are 1o
function, and for its instalfation

LIMITED WARRANTIES AND CONDITIONS OF SALE

A, Fora period of ninety (90} catendar days from the date of the Radio Shack sales document received upon purchase of the Equipment. RADIO SHACK
warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing defects. This
warranty is only applicable to purchases of Tandy Equipment by the original customer from Radio Shack company-owned compuier centers,
retall stores, and Radio Shack lranchisees and dealers at thelr authorized locations. The warranty is void if the Equipment’s case or cabinet Fas
been opened. or if the Equipment or Software has been subjected to improper or abnormal use. Hf a manufacturing defect is discovered (‘urmg
siated warranty period, the defective Equipment must be returned to a Radio Shack Compurter Center. a Radio Shack retail store g
Radio Shack franchisee or a participating Radio Shack dealer for repair, along with a copy of the sales document or fease agreement. The originai
CUSTOMER'S sole and exclusive remedy in the event of » defect is limited to the correctinn of the defect by repair, replacement, or refund of the
purchase price. at RADIO SHACK'S election and solg expense RADIO SHACK has no obligation to replace or repair expendable items

B, RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Scftware, except as provided in this paragraph
Software is iicensed on an "AS {S™ basis. without warranty. The original CUSTOMER'S exclusive remedy, in the event of a Seftware manufacturing
defect. is #ts repalr or replacement within thirty (30} calendar days of the date of the Radio Shack sales document received upon license of the
Software. The defective Software shalt be returned ta a Racio Shack Computer Center, a Radio Shack retait store. a participating Radio Shack
franchisee or Radio Shack deater along with the sales document

C. Except as provided herein no employee, agent, franchisee, deater or other person is authorized to give any warranties of any natlre on hehalf ol
RADIO SHACK

D. EXCEPT AS PROVIDED HEREIN, RADID SHACK MAKES ND EXPRESS WARRANTIES, AND ANY {MPLIED WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE IS LIMITED N iTS OURATION TG THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH
HEREN.

E. Some states do not aftow limitations on now fong an implied warranty lasts, so the above limitation(st may not apply to CUSTOMER

LIMITATION OF LIABILITY

A. EXCEPT AS PROVIOED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON OR

ENTITY WITH RESPECT TD ANY LIABILITY, LOSS GR DAMAGE CAUSED OR ALLEGED TG BE CAUSED DIRECTLY OR {NOIRECTLY BY

“EQUIPMENT” OR “SOFTWARE'' SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUOING, BUT NOT LIMITED T8, ANY

INTERRUPTION OF SERVICE, LDSS OF BUSINESS DR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR

OPERATION OF THE “EQUIPMENT” DR “SOFTWARE.” IN NO EVENT SHALL RADID SHACK BE LIABLE FOR LDSS OF PROFITS, OR ANY

INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT DF ANY BREACH DF THIS WARRANTY OR {N ANY MANNER ARISING OUT OF

OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE DR ANTICIPATEO USE OF THE *EQUIPMENT'' OR "SOFTWARE."

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADID SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY

CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT” OR “SOFTWARE"

INVOLVED.

RADIO SHACK shalt not be tiable for any damages caused by defay in delivering or furnishing Fquipment andior Software.

Nao action arfsing out of any claimed breach of this Warranty or transactions under this Warranty may be brought more ihan two (2} years afier ihe

catise of action has accrued or mare than four (4) years after the date of the Radio Shack sales document for the Equipment or Software, whichever

first occurs

D. Some sfates do not aliow the timitation or exctusion of incidentat or consequential damages. so the above fimitation(s} or exclusionfst may not apply
to CUSTOMER.

SOFTWARE LICENSE

RAD 10 SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the TANDY Software on one computer, subject to the following provisions:
Except as otherwise orovided in this Software License. applicalie copyright laws shat aoply to Ihe Software.

B; gme to the medium on which the Software Is recorded (cassette andqor diskette) or stored (ROM) is transferred to CUSTOMER, but not tifle to the

oftware

CUSTOMER may use Software on one host compiiter and access that Software through one or more terminals if the Software permits this function

D, CUSTOMER shalt not use. make, manufacture, or reproduce copies of Software except for use on one comiputer and as is specificatty provided in
this Software License. Custoner is expressty prohibited from disassembting the Software

E. CUSTOMER is permitted lo make additional copies of the Sriftware only for backup or archivat purposes or if additional copies are required in the
operation of one computer with the Software, but only to the extent the Software aliows a backup copy to be made. However, for TRSDOS Software,
CUSTOMER is permitted to make a fimited number of additional copies for CUSTOMER'S own use

F. CUSTOMER may reselt o distribute unmodified copies of ttie Software provided CUSTOMER has purchased one copy of the Software for each one
solt or distributed. The provisions of this Software License shaft afso be applicable to third parties receiving copies of the Soltware fram
CUSTOMER

G. Al copyright notices shalt be retained on ali copies of the Software

APPLICABILITY OF WARRANTY

A The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a safe of the Eguipment andior
Software License to CUSTOMER or to a transaction whereby Radio Shack selts or conveys slich Equipment to a third party for fease to CUSTOMER.

8. The limitations of Kability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author. owner and or ficensir of the
Software and any manufacturer of the Equipment sold by Radio Shack

STATE LAW RIGHTS

The warranties granted herein give the originat CUSTOMER specific fegat rights, and the original CUSTOMER may have other rights which vary from
state 10 state.

oW

12:84

SERVICE POLICY

Radio Shack's nationwide network of service facilities provides quick, conve-
nient, and reliable repair services for all of its computer products, in most
instances. Warranty service will be performed in accordance with Radio Shack's
Limited Warranty. Non-warranty service will be provided at reasonable parts and
labor costs.

Because of the sensitivity of computer products, and the problems which can
result from improper servicing. the following limitations aiso apply to the services
offered by Radio Shack:

1. If any of the warranty seals on any Radio Shack and Tandy computer products
it sells are broken. Radio Shack reserves the right to refuse 1o service the
product or to void any remaining warranty on the product

2. 1f any computer product purchased from Radio Shack has been modified so
that it is not within manufacturer's specifications. including. but notlimited to,
the installation of any non-Radio Shack parts. components, or replacement
boards, then Radio Shack reserves the right to refuse to service the product.
void any remaining warranty, remove and replace any non-Radio Shack part
found in the product, and perform whatever modifications are necessary o
return the product to original factory manufacturer's specifications

3. The cost for the labor and parts required to return the computer product to
original manufacturer's specifications will be charged to the customer in
addition to the normal repair charge

TANDY® TRS-80" Model 4D
Disk System Owner’s Manual

The FCC Wants You to Know

This equipment generates and uses radio frequency energy. If not instailed and used
property, that is, in strict accordance with the manufacturer's instructions. it may cause
interference to radio and television reception.

It has been type tested and found to comply with ihe limits for a Class B computing
device in accordance with the specifications in Subpart J of Pant 15 of FCC Rules, which
are designed to provide reasonable protectiort against such interference in a residential
installation. However, there is no guarantee that interference wili not occur in a particular
instailation

If this equipment does cause interference 1o radio or television reception, which can
be determined by turning the equipment off and on, the user is encouraged to try to cor-
rect the interference by one or more of the foilowing measures

= Reonent the recelving antenna
« Relocate the computer with respect to the receiver
= Move the computer away from the receiver

- Piug the computer into a different outlet so that computer and receiver are on aif-
ferent branch circuits

If necessary. you should consult the dealer or an experienced radio television technician
for additional suggestions. You may find the following booklet prepared by the Federal
Communications Commission helpful: How tfo Identify and Resolve Radio-TV Interference
Problems.

This booklet is available from the US Government Printing Office. Washington, DC
20402, Stock No. 004-000-00345-4

Warning

This equipment has been certified to comply with the limits for a Class B computing de-
vice, pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computer input
output devices, termingls, printers, etc)) certified 0 comply with the Class B limits may
be attached to this computer. Operation with non-certified peripherals is likely to result in
irterference to radio and TV reception

TRSDOS® Version 6 Operating System: € 1983 Logical Systems.
All Rights Reserved. Licensed to Tangy Corporation.

BASIC: © 1983 Microsoft. .
Al Rights Reserved. Licensed to Tandy Corporation.

Tandy® TRS-80% Model 4D
Disk Systern Owner's Manual:
& 1985 Tandy Corporation and Logical Systems.
All Rights Reserved.

Reproduction ar use, without express written permission from Tandy Corporation
stewss of any portion of this manual is prohibited. While reasunalie
heen taken in the preparation of this manpal to assure its accuraey
neither Tandy Corporation nor Logical Systems assumes any lahility resulting
from any ervors or omissions in this manual, ur from the use of the information
contained herein.

TRSDOS is a registered trademark nf Tandy Corporation.

10987654321

Introduction

About Your Computer

Congratulations on the purchase of your Tandy® TRS-80% Model 4D
Microcomputer System. Your new computer is compact and perfect for
business needs, as well as personal use. You will find it to be a
valuable tool that will save you work as well as give you hours of
enjoyment. lts basic features include:

64K (65536 characters) of random access memory, expandable to
128K.

High-speed Z-80A microprocessor, the “brains” of the computer.

Upper and lower case text display of 80 characters by 24 lines or
64 by 16 (software selectable).

Compatibility with the Radio Shack® Model Il Software Library.

Two built-in drives that let you use single- or double-sided, double-
density floppy disks.

Sound generation.

71-key console keyboard that includes three function keys and a
numeric keypad.

Built-in printer interface.

As your needs grow — you can expand your computer to include hard
disks, external floppy disk drives, high-resolution graphics, printers,
RS-232-C communications, and more.

About This Manual

This manual shows how you can use your disk system to:

® Store, retrieve or manipulate information on disk (using TRSDOS®).
o Write programs for your computer (using BASIC).

Your computer’s operating system is TRSDOS Version 6.2.1 (or any
later version of TRSDOS). Throughout this manual, we refer to this
system simply as TRSDOS or TRSDOS Version 6.

In the Introduction To Your Disk System manual, we covered all the
essential information to get you started. As you learn more about
TRSDOS and programming, you can take advantage of its many
features explained in this manual.

Since this is a reference manual, you don’t have to read it from front
to back. If you are a programmer, you'll find a lot of useful information
in this manual. If you are an advanced programmer, you'll find
additional technical information available in The Model4/4P Technical
Reference Manual (Cat. No. 26-2119), which is available at your local
Radio Shack store.

Part I/ TRSDOS

Section I/ Using TRSDOS describes how to start up and use
TRSDOS.

Section I/ TRSDOS Commands contains a detailed explanation of all
TRSDOS Version 6 commands and utilities.

Part I/ Model 4 BASIC
Section HiI/ Operations explains how to start up and operate BASIC.

Section IV/ BASIC Language introduces some general concepts about
BASIC, and tells how to store data on disks. Chapter 7 of this section
contains a detailed explanation of all Model 4 BASIC statements and
functions.

vi

Table of Contents

Page
Introduction
About Your Computer i v
About This Manual i vi
Part I/ TRSDOS Version 6
Section I/ Using TRSDOSot 1-3
How the Computer Uses TRSDOSo 1-5
TRSDOS Notationso ottt 1-5
TRSDOS Terms ..o 1-5
TRSDOS Abbreviations i 1-6
Loading TRSDOS 1-6
TRSDOS Ready 1-6
Executinga Command 1-7
Disk Flles. 1-7
DeVICES .. 1-10
Section IV TRSDOS Commands 1-11
How to Use This Sectiono 1-14
SYNtaX .. 1-15
TRSDOS Commands ..ot 1-17
Part I/ Model 4 Basic
Introduction
About Part Il 2-3
Notations 2-3
OIS 2-4
Terms Used in Chapter 7 for Brevity 2-4
Section I/ Operations 2-7
Chapter 1/ Sample Sessioncoiiiiii... 2-9
Chapter 2/ Command And Execution Modes............... 2-13
Chapter 3/ Line Edit Mode, 2-17
Section IV/ BASIC Language 2-23
Chapter 4/ BASIC Conceptscovviiiii .. 2-25
Chapter 5/ Disk Files. i 2-51
Chapter 6/ Introduction To BASIC Statements
And Functions 2-59
Chapter 7/ Statements And Functions 2-65
Part Ill/ Appendices A-1
Appendix A/ Job Control Language A-3
Simple JCL Execution A-4
JCL Compiling i A-12
Advanced JCL Compiling A-25
Using TRSDOS JCL To Interface With
Applications Programs A-30
Practical Examples Of TRSDOS JCL Files ... A-33
Appendix B/ Hardware A-35
Keyboard Code Map A-35
Specifications L A-39

vii

Appendix C/ Character Codes A-45
Appendix D/ Error Messages and Problems A-61

In Case Of Difficulty A-61

Error Messages A-62

TRSDOS Error Messages A-63

BASIC Error Codes and Messages A-70
Appendix E/ Converting Model Il BASIC Programs

to Model 4 Mode A-77
Appendix F/ BASIC Keywords and Derived Functions A-81

Reserved BASIC Words A-81

Derived BASIC Functions A-83
Appendix G/ Video Display Worksheet A-85
Appendix H/ Glossary i A-87
Appendix I/ TRSDOS Programs A-93
Appendix J/ Memory Maps l A-105
Appendix K/ Using The Device-Related Commands A-109
Appendix L/ Setup For 50 Hz AC Power

(non-USA users) ..., A-117
Appendix M/Backup Limited Diskettes A-11¢
Appendix N/ Converting Model 4 Data Files

to Model Il Mode A-12C

INdeX .. Index-1

viii

Part I/ TRSDOS Version 6

Section I/ Using TRSDOS

Section I/ Using TRSDOS

dJow The Computer Uses TRSDOS

Whenever you are using a program which runs under TRSDOS, your
computer will, from time to time, need to reference TRSDOS. It
atways looks for TRSDOS on Drive 0.

For this reason, you must at all times have TRSDOS in Drive 0.

RSDOS Notations

For clarity and brevily, we use some special notations and type styles
in this section.

CAPITALS and punctuation
indicate material that you must enter exactly as it appears or material
that you see on your computer’s video display.

(KEYBOARD CHARACTER)
indicates key you press.

italics
represents words, letters, characters, or values that you supply.

‘BSDOS Terms

Below is a listing of terms which we use frequently in this section. The
italicized words represent variable information which you must supply.

command represents the TRSDOS command you want to
execute. command can be in upper or lowercase
letters.

(parameters) is a list of one or more values that may be needed

by the command. Some commands have no
parameters. Most parameters are optional.
Brackets [] around any word in a command line
indicate that it is optional.

number any decimal or hexadecimal numeric expression.
Hexadecimal expressions must be in the X'nn’
format for bytes or X'nnnn’ format for words,
where nn is the hexadecimal value.

filespec is a standard TRSDOS file specification having the
general form:
filenamelext.password.drive
devspec is (1) one of six standard TRSDOS device

specifications, or (2) a user created device
specification having the general form:
xtwo-letter abbreviation

diskette refers exclusively to a floppy diskette.

disk refers to a floppy diskette, hard disk, or Memdisk.

disk 1D refers to the disk NAME, creation date, and Master
Password.
/10 refers to a transfer of data (Input/Qutput).

TRSDOS Abbreviations

You can abbreviate a parameter to its first letter (unless otherwise
stated in the command explanation). You can also abbreviate YES to
Y and NO to N. '

Loading TRSDOS

When you install and power up your system, you'll see the TRSDOS
start-up logo. This means you're in the TRSDOS Version 6 Operating
System. You then need to enter the current date in the form
mm{ddlyy. For example, for June, 18, 1985, type:

The system displays the date in expanded form (for example, Tue,
Jun 18, 1985).

You may use any of the ASCII characters in the range 32 (X'20")
through 39 (X'277), 41 (X'29') through 47 (X'2F’), and 58 (X'3A’) to
separate the month and day and day and year. See Appendix C for a
complete list of ASCII character codes.

TRSDOS Ready

Whenever you see the TRSDOS Ready prompt you know that you are
communicating with TRSDOS — not COBOL, PAYROLL, or any of
your application programs. Communicating with TRSDOS allows you
to do one of these operations:

® cxecute a TRSDOS system command or utility program
® cxecute an application program

When an error occurs, it comes from one of three places: an
application program that you are running, TRSDOS, or a particular
TRSDOS library command that you are using. If you think the error
comes from an application program, look for the explanation in the
manual that comes with the program. If you think it comes from
TRSDOS, see Appendix D of this manual. If you can't find the
explanation there, check the individual command in Section 1.

Executing A Command

Disk Files

You can execute a TRSDOS system command whenever you see the
TRSDOS Ready prompt. The command you type can consist of up to
79 upper or lower case characters. You must complete the command
by pressing (ENTER.

For example, if you want to see the TRSDOS system commands,
type:

L IB (ENTER)

TRSDOS displays a list of all the available system commands and
returns to TRSDOS Ready:

Library <A>

Append Cat Cls Copy Device Dir bo
Filter Lib Link List Load Memory Remove
Rename Reset Route Run Set Tof

Library
Atirib Aute Build Create Datle Debug Dump
Free Purge Time Verify

Library <C»
Forms Setcom Setki Spool Sysgen Syslem

If you want this display to print on the printer, type CTRD(:).
Whenever you press this key sequence, what is displayed on the
screen is printed on the printer.

If you type (CTRD) (R) at the TRSDOS Ready prompt, TRSDOS
redisplays the last executed TRSDOS command and executes it
again.

If you type () (ENTER) at the TRSDOS Ready prompt, TRSDOS
executes an Immediate Execution Program (IEP) that is stored in the
SYS13/SYS file. See Appendix |, "Immediate Execution Program” for
information on implementing an IEP.

You can keep a record of anything you type into your computer by
storing it on disk in a "disk file.” For example, a disk file can contain a
program, a collection of data, or a project report. But whatever it is, if
you want to keep it permanently, you'll have to store it in a disk file.

When the computer stores the file, it records the name of the file and
its disk location in a special place on the disk called the disk's
directory. Whenever you want to access the file, the computer can
immediately find its location by using this directory.

1-7

Filespec

Whenever you create a disk file, you need to give it a name. This
name is just one part of a file specification — fitespec, for short. The
filespec is the standard TRSDOS format you'll use every time you
reference your file:

filename/ext.password:drive

filename

The name of your file can be anything you like, as long as it is one to
eight alphanumeric characters, the first of which must be a letter. (The
only names you cannot use are TO, ON, USING and OVER.)

/extension

If you want to further identify your file, you can give it a second name
by adding an extension. An extension (indicated by /ext on our
filespec) is a sequence of one to three alphanumeric characters (the
first of which must be a letter) with a preceding slash (/).

You can use an extension to provide additional information on a file,
or you can use an extension to indicate the type of file you have.

Some TRSDOS commands require that you specify an extension; if
you don't, the command assumes a default extension. To override the
default for a file that doesn’'t have an extension, supply the filename
followed by a slash (/).

.password

A password protects a file by limiting access to it. You can accomplish
this protection via a password either when you create the file or with
the ATTRIB command.

A password is a sequence of up to eight alphanumeric characters, the
first of which must be a letter.

:drive

Often when you're using your computer, you'll have more than one
disk drive in use. You can speed up the file access time by specifying
the drive the desired file is on.

If you omit a drive number on the filespec, your computer
automatically starts looking for the file on all available drives,
beginning with Drive 0.

Here are some examples of valid TRSDOS filespecs:

DOPROG.OPEN
CLR/BAS:1
MOD16:4
STL12/TXT.ARCH:1
GAMEA
THESIS/OLD:2
CONTEMP:3

You cannot use TO, ON, OVER, or USING as TRSDOS filespecs.

Partspecs

Certain system commands and utilities allow you to specify a
collection of files by using a “partspec.” A partspec is used with a
"wildcard” mask ($). When you use a wildcard in a partspec, it
represents a wildcard field and means “any character.” For example,
suppose the following files exist on a disk in Drive 1:

A ACORN
ADVANCE/DAT ADVISE/DAT
BILLING/CMD BILLING
BILLING/BAK BILLING/DAT

If you issue the command:
CAT A:1 ENTER
TRSDOS displays these files:

All files on the disk that begin with the letter A are displayed because
when you specify a partspec, TRSDOS treats the command as “CAT
of all files that begin with ‘A"

If you issue the command:

Because you did not specify an extension, TRSDOS assumed that al
extensions are acceptable.

If you issue the command:
CAT /$A:1 [ENTER

TRSDOS displays the files on the disk which have an A as the
second character in their extension:

SN

Because you did not specify a filename, TRSDOS assumed that all
filenames are acceptable.

A wildcard character must always have at least one character to its
right. The following partspecs select the same group of files:

A As$
AsSS AS/$
AS/8

Devices

There are two kinds of TRSDOS devices: physical and logical.

A physical device is a piece of your computer hardware: the video
display, the keyboard, the printer, etc.

A logical device (devspec) is a connection between TRSDOS and a
physical device.

TRSDOS lets you treat your devices independently, which means you
can sometimes substitute a device for another one. You can also

substitute a file for a device. See the LINK, ROUTE, and SET library
commands.

Devspec

When you want to access a device, you use its device specification or
devspec.

TRSDOS devices already have devspecs assigned to them. You
assign devspecs to devices that you create. The devspec is a
two-character abbreviation for the device. The first character must be
a letter. The second character can be a letter or a number. An
asterisk must precede the devspec.

Your original TRSDOS master diskette is configured with six devices.
They are:

Devspec Device

*Kl Keyboard Input

*DO Display Output (Video)
*PR Printer

*S Standard Input

*S0 Standard Output

*JL Job Log

These are known as system devices.

Drivers And Filters

Each device is controlled by its own driver program, filter program, or
both. You can change a device's /O by manipulating its driver or filter
program. For more information on drivers and filters see the SET and
FILTER commands; see also Appendices | and K.

1-10

Section II/ TRSDOS Commands

Section II/ TRSDOS Commands

TRSDOS commands and utilities (typed in at the THSDOS Ready
level) perform a variety of helpful operations:

Diskette Handling commands allow you to prepare your blank
diskettes for use or make copies of existing diskettes. Any time you
use a blank diskette, you should use this command:

FORMAT

If you want to change the way your computer system starts up and
initializes its parameters, you can use /nitialization commands. For
example, you can use the FORMS commands to set your printer's
parameters; or you can use the AUTO command to set your computer
to AUTOmatically perform a particutar function at start-up. The

Initialization commands are:

AUTO
BOOT
DATE
FORMS
SETCOM

SETKI
SYSGEN
SYSTEM
TIME

You might find the Auxiliary commands helpful for such functions as
seeing what is on your disk or simply seeing what system commands

are available. They include:

CAT
CLS
DEVICE
DIR

DO
FREE
LiB

LIST

LOG
MEMORY
SPOOL
VERIFY
TOF

The File Handling commands and utilities allow you to copy, rename,
delete, or convert your disk files. These commands include:

APPEND
ATTRIB
BACKUP
BUILD
COMM
CONV
COPY

CREATE
PATCH
PURGE
REMOVE
RENAME
REPAIR
TAPE100

The Device Handling commands allow you to set, filter, route, or reset
your devices. Be sure you have a good understanding of devices
before you use these commands! These commands include:

FILTER
LINK
MEMDISK

RESET
ROUTE
SET

Machine Language File Handling commands create and execute
machine language disk files. These commands include:

DEBUG LOAD
DUMP RUN

How to Use This Section

This section contains an alphabetic listing of alt TRSDOS commands
and utilities. The commands and utilities for advanced programmers
are marked as "Advanced Programmer’s Utilities” and "Advanced
Programmer’s Commands.”

Commands

Commands are system operations that can be used at TRSDOS
Ready.

To see a list of all library commands, use the LIB command. Type:
L 1B (ENTER)
and the following list is displayed:

Library <A

Copy Device Dir D
List Remove
Kun
Library
Attrib Autla Build Date Debug Dump
Frae Purge Time

Library <C2

Forms Setcom Setki Spaol Sysgen Syslem
Utilities
Utilities use some or all of user memory. They return to TRSDOS

Ready; under most conditions you cannot use them effectively within
programs.

The utilities are:

BACKUP LOG
COMM PATCH
CONV REPAIR
FORMAT

Syntax

Entry Organization
Each entry in this section is identified as either a command or a utility.

The command’s “syntax” is the first line you see after the keyword.
Use it as your guide to type in a command. (See "Syntax” below for
details.)

A description of the command or utility follows the syntax. This
description tells you what the command or utility does. Next, the entry
includes additional information on the parameters of the command. A
command may require you to supply some values.

The definition also may offer several “options” that customize the
command to your needs. These optional parameters increase the
usefulness of the commands but are not necessary for normal
operation. Values and options are discussed in the additional
parameter information.

Finally, each entry gives examples of the command’s use.

The command's syntax tells you the format to use when typing the
command.

For example, here is the syntax for the COPY command:
COPY source [TO] destination [(parameters)]

In the syntax, italicized words indicate values that you supply. Words
or values that are enclosed in brackets are optional. Those that are
not enclosed in brackets are required.

In this case, you must type the keyword, which is COPY, followed by
the filespec of the file to be copied and the filespec you want
assigned to the duplicate file.

For example:
COPY NEW/DAT:1 NEWDAT/ONE:2 ENTER)

copies the Drive 1 file NEW/DAT to the diskette in Drive 2 and names
the new file NEWDAT/ONE.

The COPY command offers four optional parameters: LRL, CLONE,
ECHO, and X.

Suppose you need to assign a specific record length to the new file.
In this case, include the LRL parameter, as in this example:

COPY NEW/DAT:1 TO NEWDAT/ONE:2 (LRL=128) (ENTER

Notice that you do not type the brackets that indicate that TO is an
optional parameter, but that you do type the parentheses around
LRL=128.

A vertical bar (1) in a syntax indicates an either/or situation. For
example, DEBUG lets you turn the debugger either ON or OFF.

NOTE: You cannot use the word TO as a filespec.

1-16

APPEND

Command
APPEND source [TO] destination [(parameters)]

Appends the contents of the source onto the end of the contents of
the destination. (The contents of the source file remain the same.)

You can use APPEND to combine two files on a disk.

The source is a valid TRSDOS filespec or input devspec, and
destination is a valid TRSDOS filespec.

The parameters are:

ECHO echoes the characters to the screen when appending a
device to a file.

STRIP backspaces the destination file one byte before the
append begins.

APPEND is most useful for data files because you can use APPEND
only with ASCII files. You cannot APPEND files that are in the “load
module format.” To APPEND BASIC programs you must save them in
ASCII format by specifying the A option with the BASIC SAVE
command.

If you omit an extension with the destination filespec, TRSDOS tries to
find the destination filename with the same extension that the source
filespec has. If you want to force TRSDOS not to include an extension
with the destination filespec, include only the slash (/) and omit
additional characters when specifying the destination filespec.

Some programs place an end-of-file marker at the end of a file. Use
the STRIP parameter to remove this marker when you APPEND a file.

If you omit the STRIP parameter, the program ignores the appended
section of the file.

Examples
APPEND EAST/DAT:1 TO WEST/DAT:# (ENTER

adds the information in EAST/DAT on Drive 1 onto the end of the
information in WEST/DAT on Drive 0.

APPEND EAST/DAT:1 TO WEST/DAT:8 (STRIP) (ENTER

adds the contents of EAST/DAT to the end of the contents of
WEST/DAT as in the previous example. However, APPEND removes
the last byte of WEST/DAT before appending.

APPEND *KI TO WEST/DAT:@ (ENTER

appends the information that you type on the keyboard to the end of

WEST/DAT on Drive 0. Press CTRDSHIFTI(@) (at the same time) to
end the append.

APPEND »K1 TO WEST/DAT:¢ (ECHO)Y ENTER

displays what you are appending to WEST/DAT as you type it. Press
ETRLGHIFN(@) (at the same time) to end the append.

Error Conditions

If the records in source and destination are not the same length,
TRSDOS displays a “Files have different LRLs” error message. Use
the DIR command to display the file’s LRL. Use the COPY command
to change the LRL of a file.

If you omit destination, TRSDOS displays a “Destination spec
required” error message. Enter the command again, specifying
destination.

If you omit source, TRSDOS displays a “File spec required” error
message. Enter the command again, specifying source,

If you attempt to append a device to a device, TRSDOS displays a
“File spec required” error message. You must specify a filespec as
destination in an APPEND command.

If you omit the extension for destination filespec, TRSDOS ftries to find
the destination filename with the same extension that source filespec
has. If TRSDOS cannot find that filespec, TRSDOS displays a “File
not in directory” error message.

Sample Uses

Suppose you have two data files, PAYROLL/A and PAYROLL/B.
PAYROLL/A PAYROLL/B

Atkins, W.R. Lewis, G.E.

Baker, J.B. Miller, L.O.

Chambers, C. P. Peterson, B.

Dodson, MM W. Rodriguez, F.

Kickamon, T. Y.

You can combine the two files with the command:
APPEND PAYROLL/B TO PAYROLL/A (ENTER

PAYROLL/A now looks like this:

PAYROLL/A

Atkins, W. R.
Baker, J.B.
Chambers, C.P.
Dodson, M. W.
Kickamon, T. Y.
Lewis, G.E.
Miller, L. O.
Peterson, B.

Rodriguez, F.

PAYROLL/B is unaffected. To see the APPENDed file, type LIST
PAYROLL/A.

1-19

ATTRIB

Command
ATTRIB filespec [(parameters)]

Command

ATTRIB [.drive] [(disk parameters)]

Assigns protection passwords and attributes to a particular file or a
group of files.

You can use ATTRIB to protect a file with passwords.

For filespec ATTRIBs, the parameters are:

USER = "password" sets the user password to password. If this
parameter is omitted, the user password remains the same.
If USER= is specified with no password, then any current
user password is removed.

OWNER = "password" sets the owner password to password.If
this narameter is omittad, the ownar password remaing the
same. it OWNER = is specified with no password, then any
current owner password is removed.

PROT == leve/ specifies the protection level that is enforced if the
user password is specified. If this parameter is omitted, the
level is unchanged. You have to give a file an OWNER
password before you can set PROT. The optional levels for
access to a file are:

EXEC Execute only

READ Read and execute

UPDATE Update (change existing records), read, and
execute

WRITE Write, update, read, and execute

RENAME Rename, write, update, read, and execute

REMOVE Remove, rename, write, update, read, and

execute (allows total access except for
changing attributes with the ATTRIB
command)
FULL Allows total access
VIS specifies the filespec as visible in the directory
INV specifies the filespec as invisible in the directory. Use the
INV parameter to reduce the number of files that TRSDOS
displays when you issue a DIR command.

You can abbreviate the levels of PROTection to their first two letters
except for RENAME and REMOVE, which you can abbreviate to RN
and RM respectively.

1-20

For disk ATTRIBs, the parameters are:

LOCK protects ali visible files not currently protected by setting
their user and owner passwords to the disk master
password.

UNLOCK removes the user and owner passwords from visibie
files if their passwords match the disk master password.

MPW ="password” states the disk’s current master password. if
you don't specify this option, TRSDOS prompts you for it, if
the password is not PASSWORD.

NAME =["disk name”] specifies the new disk name. if this
parameter is omitted, the disk name remains the same.

PW=["password”] sets the new disk master password to
password. if this parameter is omitted, the disk master
password remains the same.

PW cannot be abbreviated.

drive defaults to Drive 0.

Assigning Protection Attributes To a File

Using the Owner and User Passwords. Passwords are first
assigned when the file is created. At that time, the owner and user
passwords are set at the same value (either the password you
specified, or a blank password if you did not specify one).

ATTRIB allows you to assign a file two different passwords. The user
password could be for the operator. it protects a file’s contents at a
certain protection level (set by PROT). For example, if you want an
operator to have limited access to a file, you can set the PROTection
level to READ. Then, using the user password, the operator will be
able only to read (list) and execute the file, not change, rename,
re-attrib, or remove it.

In the same manner, the owner password could be for the
programmer. Using the owner password, the programmer could
change, remove, re-attrib, or rename the same file. (When you use
the owner password to access a file, TRSDOS ignores the
PROTection level.)

In short, the user password allows limited access to a file and the
owner password allows total access.

Examples

ATTRIB CUSTFILE/DAT:1
(USER=, OWNER="BOSSMAN" ,PROT=READ) (ENTER

sets the user password blank (so no password is necessary to access
the file), sets the owner password to BOSSMAN, and sets the
protection level to read and execute.

1-21

ATTRIB CUSTFILE/DAT.BOSSMAN
(USER="SECRET",PROT=EXEC, INV)

re-attribs CUSTFILE/DAT. Note that the owner password BOSSMAN
was required to re-attrib the file. Now, CUSTFILE/DAT has the user
password SECRET, keeps owner password BOSSMAN, has the
protection level of execute only, and is invisible in the directory.

Assigning Protection Attributes To a Disk

The ATTRIB command also allows you to change the disk name, the
disk master password, and the password protection of all visible
filespecs.

Examples
ATTRIB CUNLOCK,NAME=""MYDISK') (ENTER

removes all user and owner passwords from the visible filespecs on
Drive 0 if the filespecs’ current password matches the disk master
password. It also changes the disk name to MYDISK. Since the
current master password was not specified with the MPW parameter,
your computer asks you for it (if it is other than PASSWORD) before it
executes this command.

ATTRIB :1 (NAME="DATA",PW="SECRET" ,MPW="BOSSMAN")

ENTER

sets the disk name in Drive 1 to DATA, changes the master password
to SECRET if the current disk master password is BOSSMAN.

ATTRIB C(LOCK) {ENTER

prompts you for the disk’s master password (if other than
PASSWORD) and changes the user and owner passwords of all
visible, non-password protected files to the disk’s current master
password. Since no drive was specified, the command is carried out
on Drive 0.

ATTRIB :1 C(NAME) (ENTER

prompts you for Drive 1's disk master password (unless it is
PASSWORD). It then prompts you for the new disk name.

Error Conditions

If you specify invalid values or omit necessary quotes for an ATTRIB
parameter, TRSDOS displays the message "Atiribute specification
error.” Check the parameters and try the command again.

If the disk master password is not PASSWORD, you must specify it
when executing an ATTRIB command from a JCL file. The JCL file
cannot prompt you for the password during execution. If you omit the
password, TRSDOS displays an "invalid master password” error
message.

1-22

Sample Uses

Suppose you have a data file, PAYROLL, and you want an employee
to use the file in preparing paychecks. You want the employee to be
able to read the file but not to change it. Then use a command like:

ATTRIB PAYROLL (USER="PAYDAY'", OWNER="BANANA",
PROT=READ) (ENTER

Now tell the clerk to use the password PAYDAY (which allows read
only); while only you know the password, BANANA, which grants total
access to the file.

1-23

AUTO

Command
AUTQ [parameters] [+][command line]

Stores an AUTO command line. This command line automatically
executes whenever you start up or reset TRSDOS. (That is, after you
enter the date and time, TRSDOS loads, executes the command line,
and displays the TRSDOS Ready or BASIC prompt.)

You can use AUTO to automatically run a program after you type in
the date.

command line is limited to 74 characters in length.
The parameters are:

[:drive] specifies on which drive to store the AUTO command fine.
?[:drive] displays any AUTO command line stored on drive.
={:drive] executes any AUTO command line stored on drive.

in all cases, the default drive is Drive 0.

In most cases, you can override the AUTO command during start-up

or reset by (1) holding down the (ENTER) key, or (2) pressing (BREAK
while the auto command is executing.

The exception to this is when you store the AUTO command with the
= parameter (which disables the (BREAK) key and the ability of the
ENTER) key to override AUTO).

If the AUTO command disables the (BREAK) key and the program is
non-functional, gaining controt of the disk requires several steps. To
regain controt:

1. Start up the system with another non-AUTOed disk in Drive 0.
Note: The two disks must contain the same version of TRSDOS.

2. When TRSZOS Reaady appears, place the non-functional disk in
Drive 0.

3. Type AUTO and press (ENTER), and the runaway AUTO command
is removed from the disk.

Use the :drive parameter to place an AUTO command on a drive
other than Drive 0.

Examples
AUTO BASIC (ENTER

loads the BASIC program whenever you start up or reset on Drive 0.
AUTO (ENTER)

Turns off the AUTO function currently stored on Drive 0.
AUTO DO INIT/JCL:?

executes the DO file on Drive 1 named INIT/JCL whenever you start
up or reset. Notice that the = parameter is used. This means the
operator cannot use (ENTER) to halt the auto command; BREAK) is
also disabled.

AUTO :1 DEVICE (ENTER
places the AUTO command DEVICE on Drive 1.
AUTO 2:1 (ENTER)
displays the AUTO command on Drive 1.
AUTO =:1 (ENTER)
executes the AUTO command on Drive 1.
Error Conditions
To place an AUTO command on a disk, it must be write-enabled.

The system does not check the command line for errors when you
first enter the AUTO command line. Errors are detected when the
system starts up or when the AUTO = command is executed.

Sample Use

Suppose you want the DEVICE command to execute automatically
when you restart your computer.

Do this by issuing the command:
AUTO DEVICE (ENTER)

1-25

BACKUP

Utility
BACKUP [partspec | -parispec]:source drive[TO]
:destination drive[(parameters)]

Duplicates (backs up) all or some of the files from source drive to
destination drive.

You can use BACKUP to copy the contents of one disk to another.

If you specify partspec, BACKUP duplicates all files that match
partspec. if you specify partspec, preceded by a hyphen (-), BACKUP
duplicates all files that do not match partspec. If you include a drive
number with partspec, you must include the colon(:).

If you omit parameters and partspec, TRSDOS performs a
“mirror-image backup” and duplicates all files. If the disk types are
different, TRSDOS performs a "backup reconstruct” and duplicates
only visible files.

Note: [n most cases, you can see which files a BACKUP command
would duplicate by issuing a DIR command of source drive using the
same partspec and parameters as the BACKUP command.

If you do not specify source drive and destination drive, the system
prompts you for them. If the source disk has a Master Password other
than PASSWORD, and you do not state it with the MPW = parameter,
the system prompts for it as well.

drive is

t ready, the

ge
2 ol tig + " is displayed. insert
the destination disk and press (ENTER) to continue, or press (BREAK)

nialuty

to return to TRSDOS Ready.

finse il

The destination disk must be formatted before the backup
begins. To format a disk, see the FORMAT command.

The parameters are:

MPW =“password” specifies the source disk's Master Password

SYS backs up system files as well as the visible files

INV backs up invisible files as well as the visible files

MOD backs up files that have been modified since the last
backup

QUERY = YES questions you about each file before it is backed
up

OLD backs up only those files that already exist on the
destination disk

NEW backs up only those files that do not already exist on the
destination disk

X allows backups with no system disk in Drive @

1-28

DATE = date” backs up files modified on date.
="date1-date2’ backs up files modified on or after date’
and on or before date2.
="date-" backs up files modified on or after date.
="-dfate” backs up files modified on or before date.

Dates must be in the format mm/dd/yy.
MPW cannot be abbreviated.

When you specify QUERY = YES, the system questions you for each
file before it is copied. Answer by pressing:

89 ~to copy the file.
(N) or (ENTER) to bypass the file and move on to the next one.
@ to copy the file, turn off the Query function, and

automatically copy all remaining files.

After you type the BACKUP command, TRSDOS automatically
performs one of the three types of backups: “mirror image,” "backup
by class,” or “backup reconstruct.” The difference between the three
is of technical interest and is discussed in "General Information.”

NOTE: A backup by class and backup reconstruct require two disk
drives.

For information on backing up “backup limited” disketies, see
Appendix M, "Backup Limited Diskettes.”

Backups With the (X) Parameter

When you specify the (X) parameter, you do not have to have a
system disk in Drive @ when you back up a disk. TRSDOS prompts
you to insert the proper disks in the proper drive.

Examples
BACKUP $:0 :1 (SYS,INV) ENTER

examines all files on the disk in Drive 0 and copies all files to Drive 1,
because all files match the $ partspec. The partspec causes a backup
by class.

NOTE: You can use this command to force a backup by class in
situations where a mirror image would normally be performed. For
example, it reduces fragmentation of files on the source disk by
copying them in a more contiguous manner onto a newly formatted
destination disk.

BACKUP :8 :1 (MOD,QUERY=YES,MPW="SECRET") (ENTER

copies all visible files from Drive 0 to Drive 1 that have been modified
(written to) since the last backup. It questions you for each file before
it is copied, showing the file’s mod date and flag. The (MPW =)
parameter states the Master Password, so the system does not
prompt you for it.

BACKUP $/CMD:@ :1 (ENTER

copies all visible files with the extension /CMD from Drive 0 to Drive
1. If the file already exists on Drive 1 it is overwritten. No other files
on Drive 1 are touched. A backup by class is performed.

BACKUP /$$S5:1 :2 {ENTER

backs up all files whose extensions are three characters long and end
with the letter S. The $ wildcard masks the first two characters of the
extension, so extensions such as /BAS, /TSS, and /TRS form a
match. A backup by class is performed.

BACKUP :1 :1 (ENTER

backs up between two disks in Drive 1. You are prompted to switch
the source disk and destination disk at the appropriate times.

The disks used in this type of backup must allow a mirror image
backup, or the backup aborts.

This command and the following command could be used to back up
a data disk.

BACKUP :8 :1 (X) (ENTER)

backs up the disk in Drive 0 to the disk in Drive 1. Its main use is to
back up non-system disks, such as data disks, in a two-drive system.

When you use this parameter, you are prompted to insert the proper
disk in Drive @. You may be prompted to re-insert a system disk into
Drive @ during certain backups.

When the backup is complete, you are prompted to insert a system
disk back in Drive 0.
BACKUP -/CMD: ¢ :1 (ENTER

backs up all visible files from Drive 0 to Drive 1, EXCEPT those files
that have a /CMD extension. A backup by class is performed.

BACKUP :1 :2 (NEW,QUERY=YES) (ENTER

backs up only those visible files from Drive 1 that do not already exist
on Drive 2. You are prompted before each file is moved.

BACKUP /ASM:3 :2 (DATE="85/86/82-05/10/82")
(ENTER)

backs up all visible files with the extension /ASM, whose modify dates
fall on or between the specified dates.

Error Conditions

The destination disk must be formatted before the backup
begins. To format a disk, see the FORMAT command.

For a backup by class, if the backup is to include system files, the
destination disk must be newly formatted. BACKUP can't create a
system disk if the destination disk contains data files where system
files would reside. (Existing files may be using certain areas needed
by the system.)

If you are backing up the entire disk, TRSDOS compares the source
and destination disk Disk ID’s to make sure they are identical. If the
master passwords or disk names differ, you see the following
message:

Destination disk ID 18 different
NAME

i
g EL

ame
DATE=mm/dd/yy
Are you sure you want to backup to it €Y, N»?

If the disks' master passwords differ, the following message appears:

Desiinaticn disk 1D 18 different ~- NAME=dist
name

Dﬁﬁfiwm/dd/yy
Enter i1ts Master Password or <Hreak» to sbort:

Press (BREAK) to abort the BACKUP or enter the password to
continue.

If the source and destination disks have a different number of
cylinders, the following message appears:

Cylimder counts differ - Allempl mirror-image
backup 7

Answer this question with (Y) to attempt a mirror image backup or
with (WD to force a backup reconstruct. Press (ENTER).

If a mirror image backup is not possible, you get the error:
Backup aborted, desfination nol mirror-image

This appears if the destination disk is missing a cylinder that contains
information on the source disk. This might be the case if the
destination disk is formatted with fewer cylinders than the source disk,
or if cylinders are locked out on the destination disk when it is
formatted. You can use the FREE library command to check the
destination disk for locked out cylinders.

After all the cylinders that contain data are copied to the destination
disk, BACKUP attempts to remove the modification flags from the files
on the source disk. If the disk is write protected, the following warning
message appears:

Source disk 15 write protected; MOD flags not
updated

Backup by class may NOT be done on a single drive.

1-29

General Information

Mirror Image Backup. A mirror image backup is basically a
cytinder-for-cylinder copy from the source to the destination disk.
(Only those cylinders that actually contain data are copied.) When the
backup is complete, the destination disk is an exact copy, or mirror
image, of the source disk.

Backup By Class. A backup by class takes place if you specify a
partspec or any parameter except X or MPW in the command line.

Backup Reconstruct. A backup by class and a backup reconstruct
function identically. The only difference is that while you initiate a
backup by class, the system initiates a backup reconstruct.

On certain TRSDOS application programs, you can only make a
limited number of backups. And, when you make a backup on one of
these programs, the source disk has to be write-enabled during the
backup or the backup fails. See Appendix M/Backup Limited
Diskettes.

Backups With the (X) Parameter. This parameter allows you to back
up data disks of different sizes or capacities on a two-drive system
(using backup reconstruct). When you use the (X) parameter to
backup non-system disks of different sizes or capacities, system
modules 2, 3 and 10 must first be put into memory with the SYSTEM
(SYSRES = number) command. Remember that the (X) parameter is
used only when there is a non-system disk in Drive 0. When you
specify X, BACKUP prompts you to insert the data disk.

Mirror Image Backup. TRSDOS makes a mirror image backup if the
source and destination disks’ size and density are identical, and if you
specify no partspec or parameters (except X or MPW) in the
command line, The number of cylinders doesn’t need to be identical
as long as the destination disk has at least as many cylinders as the
source disk.

The date on the destination disk shown with the DIR or FREE fibrary
commands is changed to the current system date.

After the backup, the destination disk has its directory on the same
track as the source disk regardiess of where it was before the backup.
The information on the destination disk is updated to reflect its true
cylinder count and available free space.

Backup By Class. This type of backup does a file-for-file copy from
the source to the destination disk. Files that are fragmented (spread
over more than one extent) on the source disk are consolidated (if
possible) on the destination disk.

Unlike a mirror image backup, files that exist on the destination disk
but are not on the source disk are not touched in the backup. When

the backup is complete, the destination disk contains all files moved
from the source disk plus any other files that existed on the
destination disk before the backup began.

The destination Disk ID is not changed by the backup.

When the file SYS0/SYS is included in a backup by class, the
destination disk is configured in the following manner:

1. The state of the SYSGEN (on or off) is changed to match that of
the source disk.

2. The initial date and time prompts (on or off) on power-up are set to
match those of the source disk.

3. The default drive configurations match those of the source disk.

Backup Reconstruct. The system performs a backup reconstruct
when the size or the density differs between the source and
destination disks.

DIR/SYS and BOQT/SYS are not moved to the destination disk in this
type of backup.

if you want all of the files to be moved, then you must use the
command BACKUP :source drive :destination drive (SYS,INV). This
moves visible, invisible, and system files to the destination disk.

When you are performing a backup by class or backup reconstruct,
TRSDOS may display a Disk is fuli — insert new formatted
destination disic <ENTER> warning message. This is not an error
message. TRSDOS is warning you that the destination disk is full and
all of the files on the source disk are not on the destination disk.
Remove the destination disk and insert a new formatted disk. Press
(ENTER).

TRSDOS is most likely to display this message when you are backing
up a hard disk or when the destination disk is partially full before the

backup. If a portion of a file is on the destination disk when TRSDOS
realizes that the disk is full, TRSDOS removes that portion of the file.
A file is never divided between two diskettes. TRSDOS also indicates
which files are on which destination disk.

Hard disk users should note that system files are stored in specific
places in the directory. If you use BACKUP to move the visible files
and then repeat the command with the SYS option, the backup could
be cancelled if the directory positions required for the system files are
already in use. If this happens, you can use the PURGE command to
delete the files that were moved to the disk, and then give the
BACKUP command with the SYS option.

Sample Use

Suppose you have a payroll disk where all of the new employees
have a file with an extension of /NEW and all of the old employees
have a file with an extension of /OLD.

Now suppose you want to have two separate disks: one with old
employee files and one with new employee files. You could issue the
command:

BACKUP /NEW:2 :1 (ENTER

to move all of the files of new employees from the master disk in
Drive 0 to another disk in Drive 1.

1-32

BOOT

Command
BOOT [keys]

Resets (boots) TRSDOS by returning it to its original start-up
condition.

You can use BOOT to return your computer to the TRSDOS copyright
and startup message.

The keys are:

(ENTER) allows no breakable AUTO commands to occur.
(@) enters the system debug. No sysgened configuration is
loaded.

Note: When you use one or more of these keys, you must press
and hold them down when the screen is erased and keep them
down until the TRSDOS Ready message or the DEBUG display
appears. If you are prompted for the date, you must hold down
the keys as soon as you type the date and press (ENTER. If you
don’t press the keys in time, simply reset and hold the keys
down as soon as the screen clears.

If the diskette in Drive @ contains a CONFIG/SYS file, TRSDOS
displays the message #* SYSGEN =+ in the lower left corner of the
display while the CONFIG/SYS file is loading.

Note: CONFIG/SYS files that were created using previous versions of
TRSDOS, Version 6.0 or 6.1, cannot be used with TRSDOS Version
6.2. You cannot copy a configuration file to a disk. You must use
SYSGEN to create a new CONFIG/SYS file for Version 6.2,

BOQT loads the TRSDOS system in floppy Drive @ back into the
computer. It returns the computer back to its normal power-up
configuration as if the system had been turned off and then turned on
again.

Examples

Remember to hold down the key after you press ENTER until you see
TRSDOS Ready or the debug display.

BOOT (ENTER)
resets the system.
BOOT (ENTER) (CLEAR)

returns the system to its original start-up condition and ignores any
sysgened configuration.

returns the system to its original start-up condition and ignores any
breakable AUTO commands.

1-33

BOOT (ENTER) (DD
returns the system to its original start-up condition and enters the
system debug. No sysgened configuration is loaded, and any AUTOed
command is not executed. Note: if the AUTOed command is
unbreakable, (O is ignored.

1-34

BUILD

Command

BUILD filespec [(parameters)]

Lets you enter data (such as commands) and save it on disk as
filespec.

If you omit an extension to filespec, TRSDOS assumes the extension
{JCL. If you include only the slash for extension, TRSDOS does not
assume an extension.

You can use BUILD to make a file on a disk.
The parameters are:

HEX accepts data in hexadecimal format only.
APPEND appends the BUILD data to the end of filespec.

Although you can build any type of data file with this command, it is
mainly for creating files to be executed with the DO command,
KSM/FLT, or the PATCH utility.

The HEX parameter lets you input data in hexadecimal form (see
Appendix C for a listing of hexadecimal characters). You can use hex
to generate control characters and graphics symbols which are not
avallable from the keyboard.

The APPEND parameter lets you add data to the end of an existing
file.

Some programs (such as SCRIPSIT) place their own marker at the
end of a file. If this marker is in the file, you cannot append BUILD
data to it unless you:

@ Use the BUILD command to create a new file containing the
information you wish to append.

® Use the APPEND library command with the STRIP parameter
to properly append the new information to the existing file.
Building o File

When you enter the BUILD command with a non-existing filespec,
BUILD creates the file and then allows you to insert lines.

You can enter a command line of up to 255 characters. JCL files are
limited to 79 characters per line. To end a line, press (ENTER.

To end the file, press CTRDGHIFTY(@) at the beginning of a new line.

The system returns you to TRSDOS Ready.

1-35

Examples
BUILD DISPLAY:2 ENTER

creates a new file named DISPLAY/JCL on Drive 2. TRSDOS allows
you to insert lines. Type:

(CTRDEHIFD(@)
The first three lines insert the DEVICE, and FREE :0 and FREE

commands into the “DISPLAY” file. Pressing CTRDESHIFD(@ tells
TRSDOS that you are finished entering command fines. The system
returns to TRSDOS Ready.

Now, whenever you type:
DO DISPLAY (ENTER)

TRSDOS executes the file by displaying the device table, the free
space map of Drive 0, and the free space information for all enabled
drives.

BUILD MYKEYS/KSM ENTER

builds MYKEYS on the first available drive. Since the /KSM extension
was used, a KSM file is built. See the KSM/FLT filter in Appendix 1 for
more information.

BUILD SPECIAL/:¢ (ENTER

builds SPECIAL on Drive 0. Adding the “/” allows SPECIAL to be built
without an extension.

BUILD MYJDBS/JCL (APPEND) (ENTER

searches all available drives for MYJOBS/JCL (until it is found) and
adds the information from this build to the end of the file. If
MYJOBS/JCL is not found, the file is built on the first available drive.

builds MYPROGA/FIX, which is to be used with PATCH. See the
PATCH utility for more information.

BUILD DISPLAY/BLD (HEX) (ENTER

builds a file on the first available drive, allowing data to be entered in
hexadecimal format. Information is entered into this file as
hexadecimal bytes (with no spaces or other delimiters between them).

The HEX parameter allows you to enter characters not directly
available from the keyboard, such as control, printer control, and
graphics characters. You can enter any one-byte character value.

1-36

A hex build allows 127 hex byte representations (254 characters) per
logical line. Logical lines may continue on more than one physicat line
as long as a “0D" logical line terminator does not appear. Also, more
than one logical line can appear on one physical line.

To create a character string containing graphics characters, type:
818A80A1 0D [ENTER

This line contains the hexadecimal bytes 81, 8A, 90, and A1. Notice
that the byte values are packed together. “0D” ends a logical line,
and (ENTER) ends a physical line.

If a non-hex digit is entered, the error message “Bad hex digit
encountered” is displayed and the build aborts.

Error Conditions

If you omit the APPEND parameter and specify a filespec that already
exists, TRSDOS displays a “File already exists” error message.

Sample Use

Suppose you want to build a file to be used with the PATCH
command. Issue the command:

BUILD PROG/FIX (ENTER
and enter the patch lines.

1-37

CAT

Command
CAT [partspec i -partspec][:)[drive1][-][:][drive2][(parameters)]

Displays the directory for one or more drives.

The CAT command displays the names of the files on a drive or a
range of drives.

If you specify partspec, CAT displays only filenames that match
partspec. If you specify partspec, preceded by a hyphen (-), CAT
displays all filenames that do not match partspec. If you include a
drive number with partspec, you must include the colon.

Colons are optional in the syntax of the CAT command except when:
® You specify partspec with a drive number.

e You include a colon for drive?, you must omit the colon for
drive2.

If you omit the drive numbers, CAT displays the filenames on all
enabled drives. You can include the hyphen to specify a range of
drive numbers. If you specify:

drive1-drive2 displays the directory for drive? through drive2.

drive1- displays the directory for all drive numbers equal
to or greater than drivel.

-drive2 displays the directory for Drive 0 through drive2.

Specifying parameters allows you to select which filenames CAT prints
on the screen or line printer. You must enclose parameters in
parentheses, If you include more than one parameter, separate each
with a comma. You cannot abbreviate the SORT and SYS parameters.
The parameters are:

ALL displays all directory information for the specified
diskette(s). If the directory information is lfonger than 24
lines and you do not specify the NON parameter, CAT
displays 24 lines of information and waits for you to
press a key before displaying the next 24 lines.

INV displays all filenames, visible and invisible.

MOD displays filenames modified since the last backup.

NON enables non-stop display mode. When the directory
information fills a screen, NON scrolls lines off the top
of the screen.

PRT the directory display prints on the printer and the
screen. If you include PRT, CAT assumes the NON
parameter.

SYS displays system and visible filenames.

1-38

DATE =“dlate1-date2” displays the filenames that have
been modified on or after date? and before or on

date2.

="date” displays the filenames that were modified
on date.

= “date-" displays the filenames modified on or
after date.

="-date” displays the filenames that were
modified on or before date.

Dates must be in the format mm/ddiyy.

SORT=NO does not sort the filenames. CAT assumes
SORT = YES, except when you are in an application
program, including BASIC. Sorting is by alphabetical
order.

. Drive Number.
. Disk Name.
. Number of cylinders on the disk.
. Density of the disk.
DDEN = double density
SDEN = single density
Hard = hard disk
. Amount of free (unused) space on the disk.
. Amount of space (used and unused) on the disk.
Creation date (the date the disk was formatted or was the
destination in a mirror-image backup).
8. Names of the files on the disk. The filenames are sorted
alphabetically unless you specify SORT = NO.

For a detailed explanation of each line with the ALL option, see the
DIR command.

F 0N =

~N oo

Examples
CAT (ENTER)

displays the filenames of all visible files on all enabled drives.
CAT :1- (ENTER)

displays the visible filenames on enabled drives that are equal to or
greater than one.

CAT CINV,5YS) (ENTER)

displays all filenames (visible, invisible, and system) on all enabled
drives.

CAT (aLL)> (ENTER

displays the ALL directory information for enabled drives. If the
information is longer than 24 lines, CAT displays 24 lines of the
directory and waits for you to press a key before displaying the next
24 lines. See the DIR command for a complete description of a
directory with the ALL parameter.

CAT @ (PRT,moD) (ENTER

prints and displays the visible filenames on Drive 0 that have been
modified since the last backup. When you specify the PRT parameter,
CAT assumes the NON parameter and displays the filenames on the

screen without pausing. You can press (SHIFT) and (@) to pause the
display. Press any key to continue.

CAT 1 (DATE="84/16/84-")

displays the visible filenames on Drive 1 modified on or after April 16,
1984.

CAT -1 (DATE="-§7/208/84") (ENTER)

displays the visible filenames on Drives ¢ and 1 modified before July
20, 1984,

CAT /CMD:@ (ENTER)

displays the visible filenames on Drive 0 that have the extension
/CMD.

displays the visible filenames on Drive 0 that do not have the
extension /CMD.

Error Conditions

If you specify a drive number that does not exist or that is not
enabled, CAT displays an "lllegal drive number” error message.

If you specify a range of drives and include a colon with each, CAT
assumes that the second colon is a drive number and displays an

“Hlegal drive number” error message. Try the command again and

only include the colon for the first drive number.

If you specify an enabled drive number that does not contain a
formatted disk, CAT displays a "{No Disk|" message.

1-40

CLS

Command
CLS

Clears the screen, positions the cursor in the upper left-hand corner of
the display, and sets the display to 80-column mode.

In some application programs, and at TRSDOS Ready, you can also
clear the screen by pressing SHIFT) and (CLEAR) at the same time.

In some applications, such as JCL, you cannot press keys. That is
when CLS is particularly useful.

1-41

COMM

Utility
COMM devspec [(paramelers)]

Lets two computers communicate via a device, usually the RS-232-C
communications line.

You can use COMM to let your computer talk with another computer.
COMM lets your computer:

® be used as a terminal in communicating with another
computer.

® transfer files to and from another computer.

® spool output from the other computer to your printer.

Using COMM, you can access:

@ Bulletin Board Systems

® News and Information Systems
& Timesharing Systems

e Electronic Mail Services

COMM can also communicate with systems that support XON/XOFF
(Proceed/Pause) protocol. This is a protocol that uses two control
codes named Device Control 1 and Device Control 3. (The Device
Control codes are discussed in the [CLEAR) GHIFT(command
section.)

devspec is usually *CL, the RS-232-C communications line.

Note: Before you can use =CL, you have to SET it to its driver
program COM/DVR. See Appendix L

The parameters are:

XLATES = X'aabb’ translates a character being sent.
XLATER = X'aabb’ translates a character being received.
XON = X'c¢’ changes the XON code.

XOFF = X'cc’ changes the XOFF code.

aa is the character 1o be translated.
bb is the character aa is translated into.
cc is the new value of XON or XOFF.

Enter hexadecimal values in the format X'nnnn'.

NULL = OFF prevents any nulls (ASCI value 0) from being
received.

XLATES and XLATER can be abbreviated to XS and XR.

XLATES and XLATER let you translate a character that you send and
a character that you receive from another computer. (Only one
character can be translated in each direction at any one time.)

Error Conditions

If there is not enough memory available to establish the device buffers
for COMM, TRSDOS displays an "insufficient memary to estabiish
buffers” error message. Remove some modules from memory that
you are not using or press RESET to release memory.

If you omit devspec or specify a device other than the device ;
specified with SET statement, TRSDOS displays a "Cormm Line driver
not specified” error message.

Example

Suppose you are using COMM as a terminal to communicate with
another computer, and you want to print a right bracket (]). it
appears that you can't because there is no key on your keyboard that
produces this character.

Use the XLATES parameter to produce a (]) by entering another
character from the keyboard. Type:

XLATES=X"825D"

Now when you press [LTRD(B) (hexadecimal 02), your computer
sends the code for a right bracket (hexadecimal 5D) to the other
computer. Since your computer can display a right bracket when it
recelves a hex 5D, there is no need to use XLATER to translate the
received character.

Characters that you receive from another computer can be translated
to a different symbol using XLATER. Use the same method that we
used for XLATES.

See Appendix C for a list of characters and their hex values.

The Function Keys
The Function Keys are used to:
1. Direct the flow of data (text or software) from device to device.

2. Enable and disable certain functions of COMM, including
XON/XOFF and full/half duplex operation.

The Function Keys are divided into two groups: (1) the Application
keys and (2) the Action keys.

The Application and Action keys are achieved by holding down all of
the keys in the sequence, such as TLEARED (hold down (CLEAR) and
then press (61).

1-43

The Application Keys

The Function Keys ELEAR(T) through (CLEARI(ED designate what
device an action applies to.

Function Key Device Abbreviation
Keyboard Device (#K1)
Display Device (=DO)
Printer Device (+PR)
Communications Line Device (=CL)
“Data Send" Device (+FS)
“Data Receive'" Device (*FR)

Action Keys

The remaining Function Keys perform an action. Some action keys
require_you to specify an application key (CLEARI(T through

(CLEAR)(6) before you can perform the action.

CLEARICT)

Causes the contents of the “Data Received" (xFR) area in memory to
be written to disk. This is called “Dump-To-Disk™ or DTD. DTD may be
turned ON before or after a file is received. (You must turn DTD ON if
a file will exceed the size of the *FR memory area.)

When you start COMM, DTD is ON. When you perform an =FR
) (CLEAR(@)), DTD is turned OFF. To turn it ON

If you are writing data to floppy disks and the RS-232 port is running
at a speed higher than 300 baud, you have to wait until you receive
an entire file before turning OTD ON.

(CLEARY(8)
Displays the MENU of Function Keys on the display. You can use this
command any time.

The display goes from left to right. This is not intended to be a
complete menu, but a built-in "quick reference" card.

The screen display is altered to display the menu. Any data you
receive while the menu is displayed is not lost because COMM saves
the data in a special area of memory. This data appears on the
screen after the menu is displayed.

pec CLs &-

1. The devices and functions. (The asterisks above and below the
function keys indicate that the function is active.)

2. The amount of available memory.

3. Asterisks for the shifted function keys.

4. Asterisks for the unshifted function keys.

5. Two asterisks denote a device capable of both input and output.

6. One asterisk denotes a device capable of either input or output.

7. If HANDSHAKE is active, the auto XOFF character selected is
shown in hex.

Specifies what file to use when you send or receive data. After you

specify the file, your computer opens it. If you specify a file that does
not exist, COMM creates it.

To specify the name of a receiving file, press (CLEARI(E) followed by
(CLEARI(9) and answer the following prompt:

COMM opens the file but does not set aside an area of memory to
receive the data, so any incoming data is ignored.

To save incoming data, enter the command (CLEAR)I(6) followed by
(CLEAR)(:). Now, data received is placed in the "Data Received”
(+FR) area of memory, and the data is eventually placed in the file
you specified. (See CLEAR)(:) for more information on activating
devices.)

If a file is already open, the system aborts your ELEARI(S) command
and prints the warning message:

This warning prevents you from opening another file before closing
this one. This protection also applies to files associated with the “Data
Send” (+FS) area of memory.

Closes either a receive file or a send file. You must close a receive
file so its directory can be updated, and so you can receive ancther
file. If you reset a device, its buffer is cleared.

You must turn OFF the #FR or +FS device before you can close the
associated file. (See (CLEAR(=) for information on turning OFF
devices.)

(CLEARIC:)

-

Turns ON a device. This is the second command-of a two-command
sequence.

For example, if you want to turn ON the printer, first press CLEAR(S
to indicate that . you want to do something with the printer, and then
3 to indicate that you want o turn it ON. Press

Ri(=) to turn the printer OFF.

Turns OFF a device. This is the second command of a two-command
sequence.

to indicate t at you want to do something with the prmter and then ;
; =3 to indicate. that you want to turn it OFF. Press

This is the DUPLEX control, which allows you to select Full-Duplex or
Half-Duplex.

Full-Duplex and Half-Duplex indicate how data is sent from one
computer o another on an R3-232-C line.

& Half- Dupiex is used with a computer that cannot read data
while it is sendmg it or send data while it is receiving it
1 followed by a (CLEAR:) indicates

@ Fut Dupiex is used with a computer that can read data

ding it or send data while it is receiving it.
€L () followed by a € (=) indicates

Full-Duplex operation.

When you start COMM, it is set to Full-Duplex (Duplex off).

Some computers and terminals combine Duplex and Echo functions,
s0 you should know something about the computer or terminal you
are communicating with.

CLEARSHIFTI(D
Controls character "Echo”ing. Press CLEARGHIFDCD followed by
(CLEAR D) to turn Echo ON.

You should turn Echo ON if you are communicating with a computer
or terminal that is operating in full-duplex, but does not display a copy
of characters it is transmitting to you (called Local Copy).

Turning Echo ON causes your computer to transmit each character it
receives back to the computer that sent it. This lets the person
operating the other computer see what is being transmitted.

Caution: If both ends are set for Echo ON, then the first character
sent is echoed back and forth indefinitely — or until one end turns
Echo OFF.

(CLEAR)SHIFDGH)
This command controls Echoing linefeeds. When enabled, any

carriage return your computer receives causes a linefeed character to
be transmitted back to the other computer.

This command is useful since there are a large number of terminals
and computers that treat a carriage return (ASCIl 13) and linefeed
(ASCII 10) as separate functions.

When you are communicating with another TRS-80 computer, you
can turn OFF this function by pressing CLEARGHIFD(#) followed by
CLEAR(=).

(CLEARGHIFTI(S)

Controls the ability of your computer to accept a linefeed. COMM
usually ignores the first linefeed after a carriage return, since most
computers send both a carriage return and a linefeed.

In most cases, this command is not necessary on TRS-80's where an
(ENTER) is treated as both a carriage return and linefeed.

(CLEARISHIFD(%)

Positions to the start of an =FR or «FS file, so you can start again. For
example, if you are receiving a file and it aborts with an error, you can
start over by pressing (ELEAR(E) followed by CLEARSHIFTI(%). Then

you can attempt to receive the file again.

(CLEARSHIFT(&)

Appends new data to the end of a file. This command applies to the
"Data Received” (*FR) area of memory only. If you open an existing
file and then press CLEARI(E) followed by CLEARISHIFTI(&), you can
append new data to the end of the file.

(CLEARYSHIFD(D

Displays control characters that are being received or sent. You can
use this command to detect if you are receiving unwanted control
characters. If you are receiving unwanted control characters, you can
use the XLATER to translate them.

Erases the contents of the screen and places the cursor in the upper
left corner. No data is transmitted.

CLEARGHIED(D)

When followed by an ON command (CLEAR(:J), your computer uses

all 8 bits of a character it receives. Normally, bit 8 is either not present
or invalid, so COMM removes it from each character it receives.

Do not turn this option ON unless the RS-232-C word length is set to
8. You can use the SETCOM library command to set the word length
before you enter COMM.

Allows you to enter a TRSDOS library command from COMM.
For example, when you type:
DEVICE (ENTER)

the device table is displayed on your screen. The message
“Command complete” is displayed below the device table.

NOTE: If the specified library command attempts to change HIGHS,
the command aborts and TRSDOS returns you to COMM.

(CLEAR)SHIFT)(+)
This command controls the handshaking on the data line.

Handshaking is the agreed-upon method that two communicating
computers use to control the flow of data between them. If this option
is turned ON, COMM responds to the following codes when your
computer receives them from the communications line:

Symbol Value Description

DC1 17 X1v - Resume transmission (XON or
Proceed character)

DC2 18 X112 ~ Turns the *FR device ON

DC3 19 X113 — Pause transmission (XOFF or Pause
character)

DC4 20 X114 - Turns the *FR device OFF

1-48

NOTE: You an use the XON and XOFF parameters when entering
COMM to change the handshaking characters that COMM recognizes.
These are the default values that are part of the ASCHl standard.

The XON and XOFF characters controf the transmission of data. If
handshaking is ON, when the transmitting device receives an XON
character, the device starts transmitting. It continues transmission until
it receives an XOFF or Pause character.

If handshaking is ON, when COMM receives an XOFF character,
transmission stops. COMM continues to receive characters, but does
not transmit until it receives an XON character.

To resume transmission after COMM receives an XOFF character,
execute an =CL ON command. To enter an *CL ON command, type

(CLEAR)(4) (CLEAR) (2.

You can specify a pause character to force COMM to stop sending
data when you transmit that charcter. To specify a pause character,
type (CLEAR) (SHIFT) () and the character you want to pause on. Do
not include the (CLEAR)(:) after the pause character.

For example, you may want to specify (ENTER) as the pause

character so that line-at-a-time transmission occurs. COMM pauses at
the end of each line and waits until the receiving computer sends an
XON character.

The =FR device ON and *FR device OFF control the recording
device. They tell the recording device (+FR) to start and stop
recording received data. You must create an =FR file with (CLEAR)(6)
and (CLEAR(9) before you use these controls.

(CLEARSHIFT)(=)

Exits to TF

08 Ready. It does not require any ON or OFF code.

Before COMM stops running, it checks the "Data Received” device
(*FR) to see if any open files exist. If there is an open file, COMM
closes it before it exits to TRSDOS. This feature prevents you from
having unclosed files in your system.

Quick Reference Label

If you are a beginning COMM user, you may find it helpful to make a
label containing each key’s function and place the labels directly
above the keyboard. Label the keys as follows:

Key Unshifted SHIFTed

1 *Kl Duplex

2 *DO Echo

3 *PR Echo-Linefeed
4 *CL Accept-Linefeed
5 *FS Rewind File

1-49

6 *FR Position (¢ EQF
7 DTD DCC

8 Menu Clear Screen

9 1D 8-bit mode

0] Reset Command

: On Handshaking

- Off Exit

Logging-On To CompuServe (Available only in U.S.A.)

You can use your computer and COMM to log-on to CompuServe. To
log on to CompuServe, you must first buy a Universal Sign-Up Kit
(Radio Shack Cat. No. 26-2224). Next, follow these steps:

1. First, use the SET command to SET *CL to COM/DVR (see
Appendix |). Then issue the command:

2. Type:
COMM «CL (ENTER)
3. Now you need to dial CompuServe’s number that comes in the
Universal Sign-Up Kit. Depending on which modem you are using,
you either dial the number on a phone or you must enter the

commands that cause the modem to dial the number for you, See
your modem manual for the correct procedure.

4. After the number is dialed, wait for a “carrier tone” that
CompuServe sends to tell you that you are connected.

5. Now press €TRD(T) to send a hexadecimal value of 03 to
CompuServe.

6. CompuServe prompts you on your video display with:

Answer each prompt with the numbers supplied in the Universal

7. You are now logged-on to CompuServe.

COMMunicating with Bulletin Board Systems

A Bulletin Board System (BBS) is typically a small computer used by
individuals, schools, or companies that provides a communication link
between its users.

With some TRS-80 Bulletin Board Systems, you can receive graphics
characters. For you to be able to accept these graphics, the
COM/DVR driver has to be initialized at 8 bits per word (see the
SETCOM library command) and you have to use 8-bit mode in
COMM (CLEARGHIFD(T) followed by CLEARIC).

1-50

COMMunicating with Other Computers

This section shows you how to use COMM to communicate with other
computers. The first example describes how a TRS-80 communicates
with a mainframe computer. The second example describes how two
TRS-80's can communicate.

COMMunicating with a Mainframe

When a TRS-80 communicates with a mainframe computer, in most
cases it is not necessary to change the default device or function
settings when you enter COMM. Most mainframes operate as the host
computer while you operate as a terminal, and the mainframe
provides echo functions for you. You must be sure to specify the
RS-232-C parameters when setting up the COM/DVR driver to match
those expected by the mainframe.

To transfer a file from a mainframe to your TRS-80 computer, use the
following procedure:

1. Type in the command which causes the mainframe to list the file,
but do not press ENTER).

(8). Type in the filename in response to the prompt

3. Press CLEAR®) followed by CLEAR(D) to open the receive area of
memory. If the file you wish to receive is larger than your available
area of memory, you should then press CTLEAR(7) followed by
CLEAR)IC). This causes the file to be written to the disk as it is
being received.

4. Press ENTER fo start the file listing.

5. When the listing is complete, press [CLEAR)
{CLEAR(=) to turn OFF the +FR and if
50, press (CLEARI(7) followed by (CLEAR

€) followed by
u have not already done

) to write the file to disk.

6. When the disk write is complete, type CLEARI(E) followed by
(CLEARI(G) to turn off DTD and to close the receive file

o

To transfer a file from your TRS-80 computer to a mainframe, use the
following procedure:

1. Designate the f’te that you want to send by pressing

response to the prompt

2. Turn on the handshake mode by pressing CLEAR)SHIFT:(+)
followed by (ENTER) (assuming that the line terminating character
in your file is (ERTER)).

1-51

If the mainframe does not support handshaking, first try to transfer the
file without the handshake mode. If this doesn’t work, contact the
mainframe’s computer site and find out how to send files to that
mainframe.

3. Open the file at the host end and ready it for receiving information
by whatever command process your host reguires.

4. Turn on your file send by pressing CLEARI(S) followed by
CLEARIC:).

Note that one line of your file is transmitted and then your machine
pauses. Once the host sends you the XON, the next line of the file
is automatically transmitted.

If you are operating in half-duplex, you may see the entire file
displayed without any pauses. The file is being read from your disk
and put in an area of memory where it waits to be transmitted.

5. When the transmission is complete, turn off the handshake mode
by pressing (CLEARYSHIFT)(=) followed by (CLEAR)(=).

6. Close the file at the host end by whatever command process the
host accepts. You may then close your file send by pressing
(CLEAR)(B) followed by (CLEAR)(@) (which turns off the *FS and
closes the file).

If you want to force the transmission to resume after a line is
ended, you may turn the *CL back on by pressing {CLEARI 4)
followed by (CLEAR)(;).

COMMunicating Between Two TRS-80's

When you use COMM to communicate between two TRS-80’s, one
end has to run on half-duplex (CLEARSHIFT)(D) followed by
(CLEAR)) and echo (CLEARSHIFD() followed by CLEARIC:)). if
files are to be sent and received, the RECEIVING end should run
half-duplex and echo.

To transfer files between two TRS-80's, use one of the following two
methods. Use Method A if you are operating above 300 baud. Use
Method B if you are operating at 300 baud.

Method A

1. The sending end presses (CLEAR(S) followed by (CLEAR)(9) and
enters the name of the file to be sent.

2. The receiving end presses (CLEAR(E) followed by (CLEAR(9) and
enters in the name of the file to be received. Turn the dump-to-disk
(DTD) OFF by pressing (CLEAR) (7)) followed by (CLEAR)(=). This
stores the file in memory as it is received.

1-52

If the sending end supports XON/XOFF handshaking, then you
should turn HANDSHAKE ON by pressing CLEARSHIFD(+)
followed by CLEARY).

3.

When both ends are ready, the receiving end presses CLEARI(6)
followed by CLEAR)(:), after which the sending end presses
CLEAR(E) followed by CLEAR ;).

If your free area of memory decreases to less than 2K during .
receipt of the file, a warning message is issued and an XOFF is
automatically sent to the sending end.

Transmission from the sender should cease. Once it does, dump
the receive area of memory to disk by turning on DTD by pressing

(CLEAR)(7)) followed by CLEAR)().

You can observe the increase in available memory space by
displaying a menu as the area of memory is written to disk. Once
ample space is available, turn off the DTD by pressing CLEAR(7)
followed by CLEAR)(=).

You can then manually restart the sender’s file by transmitting an
XON from your keyboard with CTRD(Q).

. The receiving end presses (CLEAR(6) followed by (CLEAR)(=}

when it has received all of the file. The last receive area of
memory should be dumped to disk by turning on DTD (CLEAR}(7)
followed by CLEARIC:)).

The sending end presses (CLEAR)(5) followed by (CLEAR)_-) and
then (CLEAR)(S) followed by (CLEAR)(@).

. When the receiving end has finished writing the information to the

disk, close the file by resetting the «FR (CLEAR(&) followed by a
(CLEAR(®)). This performs an *FR OFF and a DTD OFF, and it
closes the file just received.

Method B

1.

The sending end presses (CLEAR)(S) followed by CLEAR)(9) and
enters in the name of the file to be sent.

. The receiving end presses (CLEAR)(6) followed by (CLEARN8) and

enters in the name of the file to be received.

The dump-to-disk (DTD) must be turned ON by pressing
CLEAR(7) followed by CLEARI:) . Check to see if it is already
ON by displaying a menu ((CLEAR)(B)) and noting if an asterisk is
displayed beneath its key.

When both ends are ready, the receiving end presses (CLEARI(6)
followed by (ELEARIC:). The sending end then presses CLEARIS)
followed by CLEARX:) to turn ON the receive and send files.

1-53

4. When the receiving end has received all of the file and it is written
followed by (CLEAR)@). This performs an FR OFF and aDTD
OFF, and it closes the file just received. The sending end then

Technical Information

This section describes some of the more technical aspects of COMM
operation. This information allows you to predict how COMM will
perform during higher speed /O operations.

Muain memory usage

COMM uses all available memory below the top of memory mark
(HIGHS) for dynamic buffering of device I/O. You can see or set this
value with the MEMORY command.

The amount of buffer space devoted to each logical device
dynamically expands and shrinks according to how quickly data is
sent to a device and how fast the device can process the data it
receives. Each buffer is essentially a variable length First-In, First-Out
(FIFO) storage compartment.

The amount of free space avallable for the buffers is noted in the
bottom line of the menu display. When this free space shrinks to less
than 2K (2048 characters), a warning message is displayed and an
XOFF is automatically sent to the communications line (xCL).

This function is useful when you are receiving a file from a system
that supports handshaking. (The (CLEARSHIFD(+) command
describes the supported handshaking.)

Break commands

COMM generates a modem break (long space) when you press the
(BREAK) key. A modem break is used on many mainframe systems to
indicate you want to abort a function that is occurring at the other
computer.

However, for small computers, detecting a modem break is more
difficult, so you have to select a control character to be treated as a
"break” command.

To transmit a break character to another computer, pres
the other computer is a Model If, 12 or 18. Press (CTAI
other computer Is a Model | or lil.

1-564

Escape code sequences

Some systems transmit control codes to indicate that a cursor
movement or action is to be performed. Many systems have adapted
a two-character sequence, which does not perform the intended
function in COMM.

If you are working with one of these systems, you should contact the
operators of the other system and ask if there is a way to prevent
these control sequences from being sent to your system.

Some systems support several different types of terminals and
computers, so with a little experimenting, you should be able to find a
terminal setting that suits your needs.

Receiving large files from another system

If you receive files that won't fit into memory in one piece, you may
have to use handshaking to reduce the possibility of losing data.

CONYV (CONV/CMD)

Utility
CONYV |partspec | -partspec):source drive [:destination
drivel[(parameters)]

Allows you to move (convert) data files from a TRSDOS 1.3 (Model
IHl) diskette onto a TRSDOS Version 6 formatted diskette.

This command requries two floppy disk drives.

Use this command with data or BASIC ASCIi files. TRSDOS 1.3
application programs will not work on TRSDOS Version 6. To use
TRSDOS 1.3 programs on your computer, start up your system with a
TRSDOS 1.3 system diskette in Drive 0.

If you specify partspec, CONV moves the files that match partspec. If
you specify partspec preceded by a hyphen, CONV moves the files
that do not match partspec. If you include the drive number with
partspec, you must include the colon (:).

The parameters are:

VIS moves visible files

INV moves invisible files

SYS moves system files

NEW moves only those files that do not already exist on the
destination disk.

OLD moves only those files that already exist on the destination
disk.

QUERY = NO specifies that you are not to be questioned before
each file is moved to the destination disk.

DIR displays a short directory of a TRSDOS 1.3 disk. If you do
not specify destination drive, a short directory is displayed. If
you specify DIR, no files are moved.

If you don't specify VIS, INV, or SYS, TRSDOS moves all three types
of files.

The TRSDOS 1.3 disk must be a non-limited backup disk. Some
programs such as SCRIPSIT and VISICALC are limited backup disks.

If you have data files on a TRSDOS 1.3 limited backup disk, you must
COPY these files (under TRSDOS 1.3) to a non-limited backup disk
before you can CONVert them.

The source drive cannot be Drive 0.

When you specify a partspec, only those files matching the partspec
are moved to the destination disk.

1-56

When you do not specify the QUERY = NO parameter, you are
questioned before each file is moved. Answer the prompt by pressing:

D) to copy to file.
(N) or (ENTER to bypass the file and show the next one.

Caution: Do Not move BASIC/CMD or any other existing TRSDOS
system files.

Error Conditions

if you attempt to copy certain limited Mode! 1l TRSDOS 1.3 diskettes
with the CONV utility, TRSDOS displays a “Cannct CONY Frotected
Diskette” error message.

Examples
CONV :2 :1 (ENTER

moves all files from Drive 2 onto Drive 1. You are questioned before
each file is moved. If the file already exists in Drive 1, you are asked
again before it is copied.

CONV :1 :@ (VIS,@=ND) (ENTER

moves all visible files from Drive 1 onto Drive 0. You are not
guestioned before each file is moved.

CONV :2 :8 (NEW) ENTER

moves only those files from Drive 2 that do not already exist on
Drive 0.

CONV $$3DATA:1 :2 (OLD) (ENTER

moves any file whose filename is seven or eight characters long, the
4th through 7th characters are DATA, and that already exists on Drive
2. You are guestioned before each file is moved.

CONV :1 (DIR) (ENTER)

displays the directory of the TRSDOS 1.3 disk in Drive 1.
CONV :1 C(INV,DIR) (ENTER)

displays the invisible files of the TRSDOS 1.3 disk in Drive 1.

1-57

COPY

Utility
COPY source [TO] destination [(parameters))

Copies the source to the destination.

Source and destination can be a filespec or a devspec. Destination
can also be a drive number.

The parameters are:

LRL =number specifies the logical record length (1 to 256) for
destination. If you omit the number, destination will have the
same LRL as source.

CLONE =NO specifies that destination is not to have the
attributes of source.

ECHO causes any character copied from a devspec to be printed
on the screen.

X allows a single drive copy.

The LRL parameter lets you restructure files to make them compatible
with other programs. It is also useful when converting a source file
from one format to another.

If you wish to append two files with different LRLs, this parameter can
be used to make the LRLs match. if LRL is not specified, it defaults to
the LRL of source.

If CLONE = NO is specified, the directory entry as well as the contents
of source copies to destination. The owner and user passwords are
copied, along with the assigned protection level, the visibility in the
directory, the create flag, the last written-to date, and the modified
status of the file.

If CLONE = NO is specified, the system date becomes the last
written-to date for the destination file. If an existing destination file was
copied over, the attributes of the destination file (except for the date)
are unchanged. If the COPY command creates a new file, any
password included becomes both the user and owner password of the
destination file and the file's Mod Flag is set. The destination file is
visible, even if the source file was invisible. See the ATTRIB library
command for more information on file attributes.

If you omit an extension for the destination filespec, TRSDOS creates
a destination file that has the same extension as the source. To
override this, add a slash (/) to the end of the destination when
entering the command.

Examples
COPY TEST/DAT TO :1 (ENTER

searches the disk drives to find TEST/DAT and copies it to Drive 1.
COPY TEST/DAT.PASSWORD:¢ TO :1 (ENTER

copies the protected file TEST/DAT.PASSWORD from Drive 0 to Drive
1. All parts of the destination file, including the password, are the
same as those of the source file.

COPY TEST/DAT:@ TO MYFILE:1 (ENTER

copies TEST/DAT on Drive 0 to MYFILE/DAT on Drive 1. Since the
destination filespec does not contain an extension, it defaults to /DAT
to match the source.

COPY DATA/NEW:8 TO /0LD:¢ (ENTER)

copies DATA/NEW on Drive 0 to DATA/OLD on Drive 0. Since the
destination filespec does not contain a filename, it defaults to DATA to
match the source.

COPY TEST/DAT:2 TO TEST/DAT.CLOSED:1
(CLONE=NDY (ENTER

copies TEST/DAT from Drive 0 to Drive 1 and assigns the user and
owner passwords CLOSED. To assign a password to a destination
filespec, the CLONE parameter must be turned off.

COPY DATA/VS6:8 TO DATA/V28:1 (LRL=128) (ENTER

copies DATA/V56 on Drive @ to DATA/V28 on Drive 1. The LRL of
DATA/V28 is set to 128.

COPY *KI TO *PR (ECHD) (ENTER)

copies from the keyboard to the printer. As keys are pressed, they are
sent to the line printer. The keystrokes are visible on the video
because the ECHO parameter is specified. Pressing CTRDSHIFT(@)

or (BREAK) terminates the copy.

When copying from devspec to devspec, it is very important that all
devices specified be assigned and active in the system. Any routing
or setting affecting the devices may affect the copy.

It is very important to be aware that you can generate non-ending
loops that lock up the system when copying between devices. Be sure
to have a good understanding of this type of copy before you use it.

COPY *KI TD KEYIN/NOW: @ (ENTER)

sends the keystrokes entered from the keyboard to the file
KEYIN/NOW on Drive 0. If the file already exists, it is written over. To
view the characters as you type them, use the ECHO parameter.
Pressing CTRDSHIFD(@) terminates the copy.

COPY TEST/DAT.SECRET:@ (X) (ENTER)
copies TEST/DAT.SECRET from one diskette to another.

The destination file TEST/DAT.SECRET is visible, and its owner and
user passwords are set to SECRET.

When you use the (X) parameter, a TRSDOS system diskette is not
required in the copy if the proper system modules (1, 2, 3, and 4) are
loaded into memory (see the SYSTEM (SYSRES) library command).

During the copy, the following disk swap prompts are repeated until
the copy is complete. The prompts are:

Insert SOURCE disk <ENTER?
This refers to the diskette containing the file to be copied.
Inseri SYSTEM disk <CENTERY

The refers to a TRSDOS system diskette containing the same version
of TRSDOS that you started the system with. If system modules 1, 2,
3, and 4 are loaded into memory, press (ENTER) at this prompt.

Inserl DEBTINATION disk <ENTER®

This refers to the diskette to receive the file. This prompt may appear
twice in a row. The diskette must have a different Disk ID (disk name,
master password, or date) from the source diskette. (If it is a system
diskette, use ATTRIB if you need to change its Disk ID.)

You cannot use the (X) parameter in copies involving logical devices.
Sample Use

Every time you update a file, use COPY to make a duplicate file on
another disk. This protects you from having to re-enter the entire file if
the disk is ever damaged.

Use COPY to reduce file fragmentation. File fragmentation exists
when there is not enough contiguous space on a disk to store the file.
TRSDOS uses small areas of the disk where they are available.
Fragmentation increases the amount of time required to access the
data in the file. To reduce fragmentation, COPY the file to a disk that
has enough contiguous space for the file. The FREE command
displays the amount of free space on a disk. (See FREE and DIR for
more information on file fragmentation.)

To RENAME a file on the same disk, use RENAME, not COPY.

Error Conditions

if you include the X parameter with a COPY command in a JCL file,
TRSDOS displays an “Invalid command during DO processing” error
message. You cannot change disks during JCL processing.

If the source and destination disks are the same and you execute a
COPY command with the X parameter, TRSDOS displays a “"Source
and destination disks are the same” error message. You can omit the
X parameter if the source and destination disks are the same.

1-61

CREATE

Advanced Programmer’s Command
CREATE filespec [(parameters))

Creates a file named filespec and pre-allocates space for its future
contents.

You can use CREATE to prepare a file which will contain a known
amount of data. This usually speeds up file write operations. File
reading is also faster, since pre-allocated files are usually less
segmented or dispersed on the disk — requiring less motion of the
read/write mechanism to locate the records.

The smallest unit of space TRSDOS allocates for a file is one granule.
A granule is one or more 256 byte sectors. The size of a granule
varies depending on the type of disk you are using. On double-density
diskettes there are six 256 byte sectors or 1.5 K in a granule. Use the
FREE command to see how large a granule is on a disk. See the
FREE command for more information.

If the size of a file requires more than one granule, but less than two
granules TRSDOS allocates 2 granules. TRSDOS cannot allocate a
portion of a granule. To determine how many granules will be
allocated for a file of a specific length, use one of these formulas for
double density diskettes.

(LRL * REC / 256) / 6 or SIZE /15

When a file is CREATEd, TRSDOS does not recover unused space at
the end of the file (each time you finish using it). If you exceed the
created size, TRSDOS allocates extra space for your file as you write
to it.

The parameters are:

REC = number assigns the specified number of fixed-length
records to the file.

LRL =number assigns number as the record length of filespec.
number can be from 1 to 256. |f you omit this parameter, the
record length defaults to 256.

SIZE = number allocates disk space to the file as number (in K).

Note: You may not use SIZE if you include LRL or REC. You may only
use SIZE with files that contain 256-byte records or to CREATE new
files that contain 256-byte records. To increase the size of a file that
does not contain 256-byte records, use LRL and REC to specify the
new size as a larger number of records.

(For more information about record lengths and types, see “Disk
Files” in the Model 4/4P Technical Reference Manual.)

1-62

CREATE also lets you permanently assign additional space to a file
that already exists. Use the appropriate parameters for the new file
size.

Examples

creates a file named NEWFILE/DAT on Drive @ and allocates space
for one hundred 128-byte records.

CREATE GOOD/DAT (REC=50) ENTER

creates a file named GOOD/DAT on the first available drive and
allocates space for fifty 256-byte records.

CREATE INVENT/DAT (SIZ2E=22) (ENTER

increases the size of the already existing file, INVENT/DAT, to 20
K-bytes. INVENT/DAT must contain 256-byte records to use the SIZE
parameter. If the records are not 256-byte, use the LRL and REC
parameters to increase the size.

Error Conditions

If the SIZE or REC parameters specify less disk space than is already
allocated for an existing file, TRSDOS displays a "File e vt
error message. The size and contents of the file are not changed.

If you omit drive, TRSDOS attempts to create the file on the first
available drive. If there is not enough space on that disk, TRSDOS
displays a "Disk space full” error message. Use the FREE command
to display available disk space. Try the CREATE command again,
specifying a drive that contains enough free space for the file that you
are creating.

Sample Use

Suppose you are going to store personnel information on no more
than 250 employees, and each data record will look like this:

Name (Up to 25 letters)
Social Security Number (11 characters)
Job Description (Up to 92 characters)

Your records would need to be 25 + 11 + 92 = 128 bytes long.
You could create an appropriate file with this command:

CREATE PERSONNL/TXT (REC=250,LRL=128) (ENTER

Once created, this pre-allocated file would allow faster writing than
would a dynamically allocated file, since TRSDOS would not have to
stop writing periodically to allocate more space (unless you exceed
the pre-allocated amount by adding more than 250 employees).

1-63

DATE

Command
DATE [mm/dd/yy]

Sets or displays the current system date.

When you start up your computer, you set the current system date.
TRSDOS uses that date when creating and accessing files, making
backups, and formatting. You can change the system date with the
DATE command. if you omit mm/dd/yy, TRSDOS displays the current
system date.

mm {month) is a 2-digit number in the range 01 to 12.

dd (day of the month) is a 2-digit number in the range 01 to 31. dd
must be a valid day of the month specified. For example, you cannot
specify dd as 31 when you specify 04 as the month. April does not
have 31 days.

You must include leading zeroes for month and day.
yy (year) is a 2-digit number in the range 80 to 87.

You can use any of the characters in the ASCH range 32 (X'20")
through 39 (X'27) , 41 (X'29) through 47 (X'2F’) and ASCIi 58
(X'3A’), to separate month, day, and year. See Appendix C for a
complete list of the ASCH character codes.

Error Conditions

if you specify a value outside the valid ranges for mm, dd, and yy, or
if you specify an invalid separator between those values, TRSDOS
displays a “Bad Date formal” error message.

When you execute a SYSTEM (DATE = NO) command, TRSDOS does
not store the current system date. Any attempt to display the date
results in a “Date not in systerm” error.

Examples
DATE (ENTER)

displays the current date, such as:
Fri, Oct 8, 1882

for Friday, October 8, 1982,

resets the date to October 9, 1982 and displays the new date.

DEBUG

Advanced Programmer’s Command
DEBUG [([switch] [,] [EXT])]

The DEBUG command sets up the debug monitor, which allows you
to enter, test, and debug machine-language programs.

The switches are:

ON turns on DEBUG
OFF turns off DEBUG

If switch is not specified, ON is assumed.
EXT specifies the extended debugger
EXT, ON, and OFF can be abbreviated to E, Y, and N.

Once you have turned on DEBUG, you automatically enter the debug
monitor whenever you do one of the following:
1. Press the BREAK) key (provided BREAK) is enabled)

2. Load and execute a user program (as long as the file's
protection is not execute only)

You can also automatically activate the debugger by holding down the
(D) key while the system is booting.

While in the DEBUG monitor, you can enter any of a special set of
single-key commands to study how your program is working (as
detailed under Command Description below).

EXT loads a separate block of the system debugger into high
memory. This block contains additional functions and commands.
While DEBUG is on, TRSDOS automatically protects this area of
memory from being overlaid by BASIC or other user programs.

If you execute a program with execute-only protection, and you fail to
supply the OWNER password, DEBUG is disabled while that program
is running.

Examples
DEBUG (ENTER)

turns on the standard DEBUG and waits for it to be activated.
DEBUG (EXT) (ENTER)

turns on extended DEBUG (loads it into high memory) and waits for it
to be activated.

DEBUG (OFF) (ENTER

turns off standard or extended DEBUG.
DEBUG (OFF ,EXT) (ENTER

Turns off DEBUG and attempts to reclaim the high memory occupied
by the extended debugger. if another program is loaded in high
memory below (after) the extended debugger is loaded, the space

used by the debugger cannot be reclaimed without resetting the
system.

To enter the monitor when DEBUG is on, type:

filespec (ENTER)
TRSDOS loads filespec. If you specify the OWNER password, and if
the protection level is READ or higher, TRSDOS transfers control to
DEBUG.

Following is a sample display of the debugger screen.

The debug display contains information about the Z-80
microprocessor registers. The display is set up in the following
manner:

The register pairs are shown along the left side of the disptay,
from top to bottom. The current contents of each register pair are
shown immediately to the right of the register {abels.

The AF and AF’ pairs are followed by the current status of the
flag registers to the right of the register contents. The other
register pairs are followed by the contents of the 16 bytes of
memory they are pointing to. The contents are shown in both
hexadecimal and ASCI! representations. Non-displayable ASCII
characters are represented by periods.

1-66

The PC register shows the memory address of the next
instruction to be executed. The display to the right of that
address shows the contents of that address and the next 15
addresses.

The bottom four lines of the screen show the contents of the

memory locations indicated by the address at the left of each
line. These locations vary depending upon which command is
used.

Commoand Descriptions

When the DEBUG screen is displayed, you can enter one of the
foltowing single-key commands.

You must enter all numerics, addresses and quantities, as
hexadecimal values. If you make a mistake entering these
hexadecimal values, simply type the correct value before you press
(SPACEBAR). DEBUG ignores all but the last four digits in an address
and all put the fast two digits of a byte. For example, if you want to
enter some data at address 6789 and you type 6780, type the correct
address before you press (SPACEBAR).

H67886789 (SPACEBAR)
A (ASCIl Modify)
Aaddress

Enter the above command to modify address. If the contents of
address are already on the display, vertical bars appear around the
byte being modified.

After you enter address, press (SPACEBAR). The address and its
contents appear in the lower left corner of the screen. To modify the
byte, type the new character. DEBUG moves to the next byte and
allows you to modify it.

In addition to typing a new character, you may also press:

® (SPACEBAR) to retain the value of the current address and
move to the next address.

® (ENTER) to exit from the A command.

Note: You cannot use the X command to cancel an incorrect A
command after you have entered an address to modify. if you press
(XD after you have entered an address, DEBUG stores the character
X at the current address. You must use (ENTER to exit the A
command.

To store an ASCH! space character, (X'2¢'), or a carriage return
(X'0D’), you must use the H command and enter a '2¢’ or a '¢D’ at
the address of the space.

if you do not specify address, TRSDOS uses the current “memory
modification address” (shown by the vertical bars).

1-67

Example:
AD@ G4 (SPACEBAR)

displays the D004 and the character stored at D004 in the lower left
corner of the screen. Type the new character. Press (ENTER) to exit
from the A command or more characters to change the next
consecutive addresses.

B (Move Block of Memory)
Bstarting address,destination address,number of bytes

Enter the above command line to move a block of memory from
starting address to destination address.

Always specify a non-zero number of bytes. If you enter number of
bytes as 0, TRSDOS moves a block of 65,535 bytes to destination
address, which could cause the system to lock up and require
resetting.

Example:

B3E@4,4E34,14E (ENTER
moves the 14E-byte block of memory from 3E04 to 4E34.
C (Call Instruction)

Press (€ to single-step through the instructions pointed to by the PC
register. If a call instruction is encountered, the routine that it calls is
executed and is not single-stepped. DEBUG pauses after the
subroutine returns to the instruction following the call.

D (Display)
Daddress

Enter the above command line to display memory beginning at
address.

Example:

DE404 (ENTER)
displays memory beginning at address E404.
F (Fill Memory)

Ffirst address,last address,byte

Enter the above command line to fill the block of memory from first
address to last address with the value byte.

Example:

G (Go to an Address and Execute)
Gaddress,breakpoint1,breakpoint2

Enter the above command line to begin execution at address. If
address Is omitted, execution begins at the PC address.

breakpoint1 and breakpoint2 are optional breakpoint addresses where
execution stops. The system removes them when you return to
debug.

Example:
GEQFF,Fo@1,F261 ENTER

begins execution at EQFF. Stops execution at breakpoint addresses
F0O1 or F201.

H (Hex Modify)
Haddress

Enter the above command to modify address. If the contents of
address are already on the display, vertical bars appear around the
byte being modified.

After you enter address, press SPACEBAR). The address and its
contents appear in the lower left corner of the screen. To modify the
byte, type the hexadecimal value. DEBUG moves to the next byte and
allows you to modify it. You may also press:

o (SPACEBAR) to modify the byte and move to the next address.
e (ENTER) to modify the byte and exit from the H command.

e (X) to exit from the H command without modifying the current
byte.

Note: TRSDOS stores the new data as soon as you press (SPACEBAR)
or (ENTER).

If you do not specify address, TRSDOS uses the current "memory
modification address” (shown by the vertical bars).

Example:
HDo ¢4 (SPACEBAR)

causes address D004 and the current byte value to appear in the
lower left corner of the screen. TRSDOS allows you to enter the new

byte value. Then press (SPACEBAR), (ENTER), or (XD to continue.
I (Single-Step Execution)

Press (I to single-step through the instructions pointed to by the PC
register. This command is identical to the C command except that any
calls encountered are stepped through instruction by instruction. (Note

1-69

that RST 28H, RST 30H, and RST 38H instructions automatically
convert the | command to a C command.)

J (Jump)
Press (I to increment the program counter (PC) by 1.
O (Return to TRSDOS Ready)

Press (0) to return to TRSDOS. DEBUG is not turned off. (Use the
DEBUG (OFF) command to turn DEBUG off.)

Q (Port)

There are two kinds of ports — input and output. You read an input
port and you write to an output port.

Qport

Enter the above command line to read the byte at port and display its
value. There are 256 input ports (00 - FF).

Example:
Q45 (ENTER)

displays the value of port 45 in the lower left corner of the screen.
Qport,byte

Enter the above command line to write the value of byte to port.
There are 256 output ports.

Example:

Q45,24
writes the byte value of 04 to port 45.
R (Register Pair)

Rregister pair code contents

Enter the above command line to change the specified register pair's
contents to the new contents. There must be a space between
register pair code and contents.

The register pair codes are:

AF for AF AF' for AF
BC for BC BC' for BC
HL for HL HL' for HL
DE for DE DE' for DFE’
X for IX
Y for 1Y
SP for SP

1-70

Example:

RBC 3D@1
changes the contents of register pair BC to the value 3D01.
S (Full Screen Mode)

Press (§) to change the monitor format from the register display
mode to full screen mode. The full screen mode displays a page of
memory (256 bytes) that contains the current display address. (See
the D command.)

U (Update)

Press (D) to constantly update the display and to show any active
background tasks. To cancel this command, hold down any key for
several seconds.

X (Return)
Press (X)) to return the display to the normal register display mode.
; (Advance Memory)

Press () to advance the memory display 64 bytes in the register
mode and 256 bytes in the fuil screen mode.

— (Decrement Memory)

Press (=) to decrement the memory display by 64 bytes in the
register mode and 256 bytes in the full screen mode.

Disk Read/Write Utility

Lets you read or write to a specified block of memory. The command
line is:

disk drive,cylinder,starting sector,operation,address,number of
sectors

address is the starting address in memory where the information read
from the disk is to be placed, or where information written to the disk
is to be taken from.

Specify operation as: R for Read, W for Write, or * for a Directory
Write.

If you do not specify cylfinder, the system uses the directory track. If
you do not specify starting sector, the system starts with sector 0. If
you do not specify number of sectors, the system reads the whole
cylinder.

if an error occurs during a disk function, the error number appears on
the screen surrounded by asterisks. Hold down the (ENTER) key to
abort the disk function.

Example:
2,8,8,R,6002,2 (ENTER

reads into memory (beginning at address X'6000') sectors 0 and 1 of
cylinder @ from the disk in Drive 2. This block of memory is dispiayed
on the monitor in the full screen mode.

Extended Command Descriptions

The following commands are available only with the extended
debugger.

E (Enter Data)
Eaddress

Enter the above command to enter data directly into memory
beginning at address. The contents of address are displayed and you
can then type in two hex characters to replace the current contents.
After typing the byte, press:

. to modify the byte and move to the next address.
o (ENTER) to modify the byte and exit from the E command.
® (X to exit from the E command without modifying the byte.

It you do not specity address, TRSDOS uses the current memory
modification address (shown by the vertical bars).

Note: TRSDOS stores the new data as soon as you press (SPAGEBAR
or (ENTER).

L (Locate)
Laddress,byte

Enter the above command to locate the first occurrence of byte,
starting the search at address.

If you don't specify address, DEBUG uses the current memory
modification address (shown by the vertical bars). if you don't specify
byte, DEBUG uses the last byte given in a previous L command.

Example:

L470€E, 0D (ENTER)
searches for the first occurrence of @D after address 470E.
N (Next Load Block)

Enter the above command to position the vertical bars to the next
load block. This command is used to move logically through a block of
memory that has been ioaded directly from disk using DEBUG.

1-72

The load block type byte is a byte at the beginning of every plock.
Before you can use this command you must position the vertical bars
over the load block type byte. To do so, use the H command by
typing:

Haddress (ENTER)
Example:

Position the vertical location bars over the beginning byte of a load
block and type:

N (ENTER)
DEBUG advances to the beginning byte of the next load block.
P (Print)

Pfirst address,last address

Enter the above command line to print out the block of memory from
first address to last address.

Example:
PFC88,FCOg (ENTER

prints out the block of memory from FC80 to FC30 in the following
format:

aaaa represents the current address

bb bb ... bb represents 16 locations in hex notation

ccee ... represents the ASCIl equivalents of the 16 hex
locations

T (Type ASCHI)
Taddress

Enter the above command line to type ASCIl characters directly into
memory, starting at address. If you omit address, DEBUG uses the
current memory modification address (shown by the vertical bars).

Example:

TCBg1 (SPACEBAR)

displays the address CBO1 and its current contents in ASCHi code. If
the contents of the address are out of the ASCII character range, then
a period is displayed.

DEBUG then prompts you to enter the new ASCI| contents for CBO1.
Type:

A
to enter the hex value for A, which is 41, in address CB0O1.

Pressing (SPACEBAR) advances memory one byte without changing its
contents. DEBUG continues to prompt you to add ASCII values until
you press (ENTER) to exit the command.

V (Compare)
Viirst address,second address,length

Enter the above command line to compare a block of memory
beginning at first address to the block of memory beginning at
second address. The compare is for the specified /fength in bytes
(X'0001 — X'FFFF).

Example

VCBEE ,EF g2, 45 ENTER

compares a 45-byte long block of memory beginning at CB00 to a
45-pbyte long block of memory beginning at EF@2. The first byte of the
block of memory beginning at CB0O0 that does not match is displayed
as the first byte of memory in the DEBUG monitor. The corresponding
byte in the block of memory beginning at EF02 becomes the current
memory modification address that is used by the H, A, E, and T
commands.

W (Word)
Waddress, word

Enter the above command to search memory for word, beginning at
address. word must be in the least significant byte, most significant
byte format.

if you do not specity address, DEBUG uses the current memory
modification address. If you do not specify word, DEBUG uses the
last word given in a previous W command.

Example:

WABGG , 3412 (ENTER)
searches memory for word (1234) beginning at address AB06. The
address where word is found is displayed in the DEBUG monitor with
the vertical location bars positioned one byte before it

1-74

DEVICE

Advanced Programmer’s Command
DEVICE [(parameters)]

Displays the status of the drives, the options selected, and the data
paths for the logical devices that have been set, routed, or linked.

It also logs in disks in the available disk drives.

The parameters are:

D=NO suppresses the drive portion of the display. Any new
drives or disks are not detected.

B=YES enables the logical device portion of the display.

S=NO suppresses the options status portion of the display.

P=YES duplicates the display to the printer.

1. The DRIVE section shows the current configuration of the disk
drives.

2. The DEVICE section shows the devices (displayed when B=YES).
3. The STATUS section displays the status of some user selected

PRYPR YR @9

ap
ag

Ly

1. The number of the drive accessed (the logical drive number).
(See the SYSTEM command.)

2. The write protect status assigned to the drive by the SYSTEM
(DRIVE = WP =) command. A disk can also be write protected by
placing a foil tab over the write-protect notch on the diskette.

WP = Write Protected

3. Disk name.

4. Disk size.

10.

Type of drive — either floppy or hard.
For floppy disk systems, the physical location of the drive.
1 - lower
2 - upper
4 - middle of the disk expansion cable
8 - end of cable
The number of cylinders specified when the disk in the drive was
formatted.

. The data density of the disk accessed in the drive.

Dden = Double density
Sden = Single density
Fixed = hard disk

. The number of sides the floppy diskette has available for storage.

1=0One side

2="Two sides
The step rate of the floppy disk drive (in milliseconds). The step
rate is the speed at which the disk drive head is moved from
cylinder to cylinder.

. The delay time for accessing a 5" floppy disk. This is the amount

of time the system waits after starting the drive motor before it
attempts to access the disk.

NOTE: The Step rate and Delay time are preset for the system. See
the SYSTEM command to change these values,

Kl < = XO08FO

«DO < = >X'0B88’

sPR = >#L0| +TD & = > X'OEQF’
Sl <

480 =

sJL

FF < # >[Inactive]X'OFFE’
«TD < = >PRINT/TXT:0
L0 = >XOEOF

In the logical device portion of the device table:

indicates an input device
indicates an output device
> indicates a device capable of input and output
indicates a filter
indicates a link

THA A
[V

If you add a driver or filter to the default system, the DEVICE
command shows the address where a device transfers control to its
driver or filter. If more than one filter or driver is associated with the
same device, the first driver's address is displayed. It also shows the
interaction between devices and/or files.

Options: Type, Fast
System modules resident: 1, 2, 4

The options line displays the active system options. System options
are usually established with the FILTER, LINK, ROUTE, SET, SPOOL,
and SYSTEM library commands. The options are:

Fast/Slow

Forms

Graphic

KSM

Memdisk

Smooth

indicates the system speed. Fast indicates that the
system is running at 4MHz. Slow indicates that the
system is running at 2MHz. The slow speed is the
Model il system speed. Timing loops in TRSDOS
Version 1 programs may require the slower speed
for the programs to function properly under
TRSDOS 6. The default value for speed is Fast.
See the SYSTEM command for additional
information.

indicates that the FORMS filter is resident, and
may be active or inactive. The default for FORMS
is Off. See the SET, FILTER, and FORMS
commands, and Appendix | for additional
information.

indicates that during screen prints ((€TRD) (:)) the
printer has the capability to print graphics
characters. Graphics characters are ASCli values
greater than X'7F’. You must have a graphics
printer to print these characters. The default value
for Graphic is off. When Graphic is off during
screen prints, the printer prints all characters
having a value larger than X'7F’ as periods (.).

indicates that the Keystroke Multiply Filter (KSM)
is resident, and may be active or inactive. The
default for KSM is off. See the SET and FILTER
commands, and Appendix ! for additional
information.

indicates that the Memdisk utility is active. The
default value for Memdisk is Off. See the SYSTEM
command and Appendix | for additional
information.

causes TRSDOS to disable interrupts when
reading data from a floppy disk. Smooth increases
disk access speed. However, the type-ahead
function depends on interrupts occurring at regular
intervals. Disabling the interrupts can cause a loss
of keystrokes during disk 1/O. When SMOOTH is
active, the time-of-day clock is not as accurate. It
can also result in lost RS232 characters when
DTD is on in COMM. The default value for
SMOQTH is On. See the SYSTEM command and
COMM for additional information.

Spooler indicates that the device spooler is buffering text
being sent to the line printer or the RS-232-C
communications line. The default for the spooler is
Off. See the SPOOL command or Appendix | for
more information on activating the device spooler.

Type indicates the type-ahead function is buffering
keyboard strokes until the system is ready for
them. This allows you 1o type in information before
the system prompts you for it. If you disable the
type-ahead function, programs run slightly faster.
The default for the Type is On. See the SYSTEM
command for more information on the type-ahead
function.

Verify indicates that the system is verifying each sector
of data as it is written to disk. An error message
appears if the system cannot read the data.
Although verify slows disk /O slightly, it can save
time in the future if there is something wrong with
the data. The default value for Verify is Off. See
the VERIFY command for additional information.

The system line displays the resident system overlays. See the
SYSTEM (SYSRES=) library command.

Examples

displays the TRSDOS options, and turns the drive portion of the
display off. Any new drives or disks are not detected.

enables the device portion of the device table, and displays the entire
table.

DEVICE (S=N0) (ENTER

displays the drive table, and turns the options status portion of the
display off.

DEVICE (P) (ENTER
displays the drive portion on the display, and sends it to the printer.

1-78

DIR

Command
DIR [partspec | -partspec][:][drive1][-][:][drive2]
[(parameters)]

Displays the directory for one or more drives.

The DIR command displays complete directory information for the files
on one drive or a range of diskettes.

If you specify partspec, DIR displays only the filenames that match
partspec. If you specify partspec, preceded by a hyphen (-), DIR
displays all filenames that do not match partspec. If you include a
drive number with partspec, you must include the colon (:).

Colons are optional in the syntax of the DIR command except when:
¢ You specify partspec with a drive number.

e You include a colon for drive?, you must omit the colon for
drive2.

If you omit the drive numbers, DIR displays the filenames on all
enabled drives. You can include the hyphen to specify a range of
drive numbers. If you specify:

drivel-drive2 displays the directory for diskettes in drive?
through drive2.

drivet- displays the directory for all drive numbers
equal to or greater than driveT.

-drive2 displays the directory for Drive 0 through
drive2.

Specifying parameters allows you to select which filenames DIR prints
on the screen or line printer. You must enclose parameters in
parentheses. If you include more than one parameter, separate each
with a comma. You cannot abbreviate the SORT and SYS parameters.
The parameters are:

ALL=NO displays the filenames for the specified drive(s). The
default value is ALL = YES.

INV displays all filenames, visible and invisible.
MOD displays filenames modified since the last backup.
NON enable non-stop display mode. When the directory

information fills a screen, NON scrolls lines off the
top of the screen.

PRT the directory display prints on the printer and the
screen. If you specify PRT, DIR assumes the NON
parameter.

SYS displays system and visible filenames.

1-79

DATE = "date1-date2” displays the names of files that have
been modified on or after date? and before or on
date2.

“date” displays the names of files that were modified
on date.

“date-” displays the names of files modified on or
after date.

"-date” displays the names of files that were
modified on or before date.

Dates must be in the format mm/dd/yy.
SORT =NO does not sort the filenames. DIR assumes SORT == YES,

> woho

except when you are in an application program including
BASIC. Sorting is by alphabetical order.

Drive Number.
Disk Name.

Number of cylinders on the disk.

Density of the disk.
DDEN = Double density
SDEN = Single density
Hard = Hard disk

. Amount of free (unused) space on the disk. The amount is given

in kilobytes {K). One K= 1024 bytes.

. Total amount of space (used and unused) on the disk. The

amount is given in kilobytes.

. Creation date (the date the disk was formatted or was the

destination in a mirror-image backup).

8.

10.

Filespec (filename and extension) assigned at creation. The
filespecs are sorted alphabetically unless you specify SORT = NO
in the DIR command.

. Modification Status. A plus sign (+) indicates the file has been

modified since it was last backed up.
File's attributes.

Invisible file.

File has an owner password.

System file.

File was created with the CREATE command or
was pre-allocated by an application program.
File is a Partition Data Set (PDS) file. See the
Model 4/4P Technical Reference Manual for
additional information.

i

2]
o
Ay

o

[I

i

? = File is open. See the RESET command.

11. Protection level (the level of access assigned to the user
password). See the ATTRIB command for a list of levels.

12. Length (in bytes) of the logical records in the file. The LRL
(logical record length) can be any number in the range 1 to 256.

13. Number of logical records in the file.

14. End of File, or EOF (the number of the last byte in the last sector
of the file).

15. Amount of space (in K) that the file takes.

16. Number of extents (non-continuous blocks of space) used to store
the file. The higher the number, the more fragmented the file.

17. Modification date (the date the file was created or last written to).

18. Number of specified files (files on the disk that match the
parameters you specify with DIR}.

19. Total number of files on the disk.

20. Amount of space (in K) used by the specified files.

Examples

DIR (ENTER)

displays the filenames of all visible files on all enabled drives.

DIR :1- (ENTER)

displays the visible filenames on enabled drives that are equal to or
greater than one.

1-81

displays all filenames (v;s;b!e, invisible, and system) on all enabled
drives.

DIR 8 (PRT,MOD) (ENTER)

prints and displays the visible filenames on Drive 0 that have been
modified since the last backup. When you specify the PRT parameter,
DIR assumes the NON parameter and displays the filenames on the
screen without pausing. You can press (SHIFT) and (@) to pause the
display. Press any key to continue.

DIR 1 (DATE="g4/16/84-") (ENTER)

displays the visible filenames on Drive 1 modified on or after April 16,
1984.

DIR -1 (DATE="g7/28/84") (ENTER

displays the visible filenames on Drives 0 and 1 modified on July 20,
1984.

DIR /cMD: 2 (ENTER

displays the visible filenames on Drive 0 that have the extension
/CMD.

DIR -/CMD: ¢ (ENTER)

displays the visible filenames on Drive 0 that do not have the
extension /CMD.

Error Conditions

If you specify a drive number that does not exist or that is not
enabled, DIR issues an “illegal drive number’ error message.

If you specify a range of drive numbers, each with a colon, DIR
assumes that the second colon is a drive number and displays an
“llegal drive number” error message. Try the command again and
only include the colon for the first drive number.

If you specify an enabled drive number that does n t contam a
formatted disk, DIR displays the message * £

1-82

DO

Command
DO [control character] filespec [(parameters)] [;]

Compiles and executes a DO file.

You can use DO to run a file of commands each time TRSDOS starts
up.

A DO file is a user created Job Control Language (JCL) file that
contains one or more library commands. TRSDOS executes the
commands as if you had typed them in from the keyboard.

In addition to executing TRSDOS commands, you can load and
execute user programs from a DO file.

You can create a DO file with the BUILD command. Command lines in
this file can include library commands or filespecs. See Appendix A/
Job Control Language for more information on JCL files.

The control characters are:

$ compiles your DO file without actually executing the
commands.

= executes your DO file without compiling it.

* reruns the last DO command that was compiled.

When you specify a control character, you must leave a space
between DO and the character or TRSDOS ignores the character.

The parameters are:

(@label lets you create JCL files with multiple entry points (an
entry point is the place where processing begins). A label
consists of the @ symbol followed by one to eight alphanumeric
characters.

parm| = value] lets you pass value to filespec during execution.

When you specify the @/abel parameter, filespec does not execute
until the label is reached. Execution continues until it reaches the next
label or the end of the JCL file.

The (@label parameter, by building many different functions into one
file, reduces the number of individual files on the disk (conserving
space in the directory).

Use the semicolon (;) parameter when you need to specify a
command line longer than 79 characters.

When a DO command line exceeds 79 characters:

1. Enclose as many parameters as will fit on one line in parentheses.

2. When a question mark appears on the screen, enter the remaining
parameters (enclosed in parentheses).

Examples
DO DRIVE/JCL (ENTER)

compiles and executes the file named DRIVE/JCL.
DO = DRIVE/JCL (ENTER)

executes the file named DRIVE/JCL without compiling it.
DO $ DRIVE (ENTER)

compiles the file named DRIVE/JCL without executing it. Since you
did not specify an extension to DRIVE, it defaulted to JCL. You can
LIST the SYSTEM/JCL file to see if the JCL compiled properly.

DO MY/JCL (@THIRD) (ENTER)

compiles and executes the program named MY/JCL. All instructions in
the program are ighored up to the label (@ THIRD). Compilation
begins at the line following the label and continues until the next label
or the end of the file is reached.

DO * (ENTER)

executes SYSTEM/JCL, which contains the last DO file that was
compiled.

DO TEST/NEW:2 (D=5,E=6) (ENTER

compiles and executes the file TEST/NEW on Drive 2. The variable
parameters D=5 and E=6 are passed as needed during compilation.

Error Conditions

If TRSDOS encounters an efror while processing a DO command,
TRSDOS does not execute the DO command.

If a JCL line is longer than 70 characters, TRSDOS displays a "L
oo long” error message.

If you specify a value for token that is more than 32 characters long,
TRSDOS displays a "Symibol string too long” error message.

If you specxfy a Iabel that DO cannot find in the JCL file, TRSDOS
displays a re not found” error message.

Clalt

If you specify more than one label in a command line, TRSDOS
displays a "Tno many Proc labels” error message. Labels specify a
point where processing begins and processing can only begin at one
point.

If the dlskette IS not in the drive or is wnte protected TRSDOS
displays a "C SYSTEMACL file” error message.

If you assign two values to the same token in a JCL command,
TRSDOS displays a “Muttinty gef " error message.

If you specify more than 10 /INCLUDE statements in a JCL
procedure, TRSDOS displays a nested INCLUDES” error
message.

When you specify the = control character, a “File not in ¢
error occurs if there is no previously compiled DO file to rerun.

When you specify the $ control character, the system compiles the
JCL file and informs you of any errors that occur. This lets you see if
the file compiles properly before you actually execute it. When you
compile a JCL file, a disk in your system must be write-enabled, so
the system can write the compiled information to a file named
SYSTEM/JCL.

When you use the = character, you cannot use some of the JCL
features. See the JCL section of this manual.

Sample Uses

Suppose you want to set up the following TRSDOS functions to
execute by typing one command:

FORMS (MARGIN = 8)
TIME (CLOCK = ON)

Use BUILD to create such a file. If you called the file BEGIN, then use
the command:
DO BEGIN (ENTER)

to perform the commands.

1-85

DUMP

Advanced Programmer’s Command

DUMP filespec (parameters)

Copies an area of memory to a disk file named filespec.

You can use DUMP to store a machine-language program from
memory to a file.

DUMP can produce a program or a core ASCI! file. A program
produced with DUMP can then be loaded or executed at any time. (An
ASCI! file cannot be loaded with the LOAD command or executed with
the RUN command.)

The default extension for program dumps is /LMF, and the default
extension for ASCIl dumps is /TXT.

You can use some or all of the following parameters:

START = address starts the dump at address. You must include
this parameter. The address must be above 2FFF
hexadecimal or 12287 decimal.

END = address ends the dump at address. You must include this
parameter. END must be greater than or equal to START,
and can be either a hexadecimal or decimal number.

TRA=address sets the address at which your program begins
executing after you toad it. If you omit this parameter, any
subsequent run of the file will only load the program and
return you to TRSDOS Ready. TRA can be either a
hexadecimal or a decimal number. The TRA and ASCII
parameters are mutually exclusive.

ASCIi specifies that the dump is to an ASCII file. ASCII files
contain program code only. No system loading information is
written to filespec. The TRA and ASCII parameters are
mutually exclusive.

ETX = value specifies that the character at the end of an ASCII
file is equal to value. value is a hexadecimal number in the
format x'nn’. When you specify ETX, you must also specify
ASCIL

ETX cannot be abbreviated.

When you DUMP to an ASCII file, you create a file that has the
identical file structure as a SCRIPSIT file. The system writes a special
character at the end of the file which can be changed with the ETX
parameter,

Examples
DUMP ROUTINE/CMD (START=X’7008’,END=X'8008",TRA=

dumps the area of memory starting at hexadecimal 7000 and ending
at hexadecimal 8000. This block of memory is written to a disk file

1-86

named ROUTINE/CMD. If the file already exists, it is overwritten. If it
does not exist, it is created on the first available drive. The transfer
address (starting address for execution) of ROUTINE/CMD is
hexadecimal 7000.

DUMP ROUTINE/CMD (START=28672,END=32768,TRA=
28672) (ENTER

is identical to the above command except that START, END, and TRA
have decimal values.

DUMP TEST:1 (S=X’9000‘,E=X'BCoF ‘) ENTER

dumps the specified block of memory to a disk file named TEST/LMF
on Drive 1. Since you did not specify a file extension to TEST, it
defaulted to /LMF. Also, since you did not specify a transfer address,
it is written to the file as a return to TRSDOS Ready.

DUMP WORD/IMG:@ (S=X’7088‘,E=X’ABEA’, ASCII)
(ENTER)

dumps the specified block of memory to a disk file named WORD/IMG
on Drive 0. Since the ASCII parameter is specified, an ASCI file is
created.

DUMP WORD (S=X'7058’,E=X’A0Q0°, ETX=X'FF’, ASCII)
(ENTER)

dumps the specified block of memory to a disk file named
WORD/TXT. An ASCI!I file is created, and the special character at the
end of the text (end of text marker) is written as hexadecimal FF.
Since you did not specify an extension for WORD, it defaulted to
/TXT.

If you specify a START address that is less than END address,
TRSDOS displays a "START or END error” message.

1-87

FILTER

Advanced Programmer’s Command
FILTER devspec [USING] phantom devspec

Connects a filter program to devspec which modifies or “filters” data
as it is read from or written to devspec.

A filter is a program that controls the flow of data to or from a device
or file. You can use a filter to change data as it passes to or from
devspec. You can apply more than one filter to a device.

devspec is any valid, active TRSDOS device. phantom devspec is the
name of a device which is connected to the filter program established
in memory with the SET command.

You can apply as many filter programs to devspec as you want to. if
there is not any more space in memory for the filter connection, the
error message "No device spaoe availabie” appears.

See the SET command for more information on FILTER.
Example

Normally, the CLICK filter (CLICK/FLT) generates a click whenever
any key is pressed. By using the CLICK's CHAR =number parameter
and the FILTER command, you can cause CLICK to generate a beep
whenever an ASCHl 7 (BEL) is sent to the display.

To do so, first use SET to install the CLICK fiiter. Then, use FILTER to
connect CLICK/FLT to the display. Type:

SET *BP CLICK/FLT (CHAR=7) ENTER)
FILTER =DO +BP (ENTER)

Now, if you press €TRD G or if a program sends an ASCHi 7 to the
display, CLICK generates a beep.

Sample Use

You can use a filter to control a printer working with non-standard size
paper (see Appendices | and K, and the FORMS library command).

Error Conditions

If you specify a filter device that is already in use, TRSDOS displays a
"FILTER moduie i use” error message. TRSDOS also displays this
message if you attempt to link a filter device to more than one device.

if there is not enough memory space for the filter connection,
TRSDOS displays a "No device space avaiable" error message.
Remove unused devices and try the command again.

FORMAT

Utility
FORMAT [.drive [(parameters)]]

Prepares a blank or old disk for use by defining the tracks and sectors
and writing system information onto it. (For more information, see
“Diskette Organization” in the Model 4/4P Technical Reference
Manual, Cat. No. 26-2110.)

You can use FORMAT to organize a disk so you can store information
on it.

drive specifies the drive in which the blank or old disk is to be
formatted. If you omit the drive, TRSDOS prompts you for it.

The parameters are:

ABS overwrites any existing data without prompting. The ABS
parameter is used primarily when you execute a FORMAT
from a JCL file. See the JCL section for more information.

NAME = "disk name” assigns a name to the disk being formatted.

MPW = “password” assigns the master password to the disk.
The master password allows limited access to all user files.

SDEN specifies the density of the disk as single.

DDEN specifies the density of the disk as double.
SIDES = number specifies the number of sides of a diskette that
are to be formatted. number can be 1 or 2. If you omit
number, 1 is assumed. You must have double-sided drives

and media to specify SIDES =2.

CYL=number specifies the number of cylinders (tracks) for the
disk. number can be 35 to 96.

QUERY =NO turns off the prompts for density, number of
cylinders, name, and password.

DIR = number specifies the cylinder on which to put the directory.
number must be less than the value you specify with the
CYL parameter and greater than one. If you specify an
invalid value or omit the DIR parameter, FORMAT assumes
the center cylinder of the drive. On a 40-cylinder floppy
diskette, FORMAT assumes 20.

SYSTEM recreates the directory file on a hard disk. TRSDOS
assumes that you have previously formatted the hard disk. If
the hard disk contains any files, the files are not accessible
after you use FORMAT.

QUERY is the only parameter that can be abbreviated.

When to Format

To prepare a new disk. Before you can use a new disk, you must
format it. After formatting, record the disk name, date of creation, and
password. Store this information in a safe place. It helps you estimate
how long a diskette has been in use. And, if you forget the master
password, it ensures continued access.

1-89

To erase all data from a disk. To “start over” with a disk, you can
reformat it. This erases all old information and locks out all flawed
sectors which have developed. It puts the system information back on
the disk and leaves the “good” sectors available for information
storage.

The Format Prompts

If you specify the drive number, disk name, or master password in the
command line, you are not prompted for them.

If you specify the number of cylinders, the density, or the number of
sides, FORMAT does not prompt for the other two. It assumes the
defaults.

If you enter a FORMAT command without specifying any parameters,
you are prompted for them in the following order:

Which drive is to be used?
Enter the number of the drive you are formatting in.

Enter any name with up to eight alphanumeric characters. The first
character must be a letter. Press (ENTER) and the disk name defaults
to DATADISK.

Enter any password with up to eight alphanumeric characters. The
first character must be a letter. Pressing (ENTER) causes the master
password to default to PASSWORD.

The remaining prompts concern the type of diskette you are using.
Press (ENTER) in answer to each of them if you are using standard
Tandy diskettes.

ty <8,D>7

gy

Enter (8) for single density or (B for double density. Press (ENTER
and the value defaults to double density.

oF <1, g0
Enter (1) to format a single-sided diskette or (2) to format a double-
sided diskette. You must have double-sided disk drives and media to

specify two sides. Pressing (ENTER) causes the diskette to be
formatted single-sided.

N

Enter any number from 35 to 40 on TRS-80 hardware. Pressing
causes the system to default to the value set with the

SYSTEM (CYL =) command. TRSDOS 6 is distributed with (CYL = 40)
already set.

If you are formatting a disk in Drive @ or the destination drive is not
ready, the following message is displayed:

Load destination disketie <ENTER>

Insert the destination diskette and press (ENTER) to continue, or press
(BREAK) to return to TRSDOS Ready.

It is important that you do not remove the system disk and insert the
disk to be formatted until this prompt appears.

After you enter a format command and before the actual formatting
begins, the system checks the destination diskette to see if it is
already formatted.

If the disk is formatted and its MPW is PASSWORD, the following
message appears:

Disk co
Date=

i o e} : ni T oy e w7t 5 G
Bre you 3 vou want to fo Tty

Press () to abort the FORMAT or (Y) to continue. If you specified
the ABS parameter in the command line, you see the DiGK
CONTAING DATA message, but you are not prompted to abort the
format.

If the disk is formatted and the master password of the destination
disk is not PASSWORD, the following message appears:

Enter

Paszword or CHREAKS> to abort:

Press (BREAK) to abort the format or enter the master password to
continue.

If the disk contains an incomplete or non-standard format, one of the
following messages may appear in place of NAME = disk name:

gireclory

When the format begins, you see the cylinder numbers appear as the
necessary information is written to them. After all cylinders are written,
FORMAT verifies that the proper information is actually on each
cylinder.

If the verify procedure detects an error, an asterisk and the cylinder
number are shown on the screen. That cylinder is locked out, so that
no files can be written to the defective area. Use the FREE library
command to see the locked out cylinders on a diskette.

During parts of the format operations, the system real time clock is
turned off.

1-91

After formatting is complete, you are prompted to put the system disk
back in Drive @ with the message:

Load SYSTEM diskelle CENTERY

The format is now complete.

Examples
FORMAT (ENTER)

prompts you for the drive number, the diskette name, the master
password, the density, the number of sides, and number of cylinders,
and checks to see if the destination disk is already formatted.

FORMAT :1 (NAME="DATA3" MPW="SECRET") (ENTER

prompts you for the DEN, SIDES, and CYL parameters, and checks to
see if the disk in Drive 1 is already formatted. The disk in Drive 1 is
assigned the name DATA3 and the master password SECRET.

FORMAT :@8 (NAME="FILES", MPW="FILE@1", G=N) (ENTER
displays the message:

Load deslination diskellse

When you insert the destination disk in Drive 0, the system checks to
see if the disk is already formatted. When the message:

Load &

appears, insert the system disk in Drive @ and the format is
completed.

FORMAT :1 (QUERY=NO,ABS) ENTER

formats the disk in Drive 1 (with the default options) even if the disk
already contains data. Because you specified the ABS parameter, you
don't have the opportunity to abort the FORMAT (if the disk is already
formatted and its master password is PASSWORD).

Error Conditions

FORMAT builds a track image of the diskette in memory. If there is
not enough memory available to build this track, TRSDOS displays an
“Insufficient memory for specified tormat” error message. TRSDOS
usually displays this message when HIGH$ is set very low and the
FORMAT program requires memory above HIGHS$. Reset HIGHS and
try the FORMAT command again.

If you attempt to use the SYSTEM parameter with a diskette,
TRSDOS displays a "Cannot “SYBTEM" a floppy™ error message.
The SYSTEM parameter is only valid with hard disks.

If you specify an invalid drive number, the error message "liegal drive

number” appears.

If there is write-protect tab on the disk or the drive is protected by the
SYSTEM (DRIVE = WP) command, the error message "Disk write
protected” appears.

If the error message "Load destination diskette” appears after you
insert the destination diskette:

1.
2.
3.

4.

Be sure the disk drive door is closed.
Make sure that the diskette is inserted correctly.

If the drive is an external drive, make sure the drive is connected
and plugged into the outlet.

Try formatting the disk in a different drive.

If the message "Formatting complete” does not appear, repeat the
format. If the message still does not appear, it indicates a flawed disk.
Try another disk.

1-93

FORMS

Command
FORMS {(parameters)]

Sets up forms filter parameters.

You can use FORMS to print a form larger or smaller than a
standard-size page.

The parameters are:

DEFAULT returns all parameters to their start-up values.

ADDLF issues a linefeed after every carriage return.

CHARS =number sets the number of characters per printed line.
number is 1 - 255.

FFHARD issues a form feed (Top of Form) character (ASCI code
12) instead of a series of linefeeds.

INDENT =number sets the number of spaces a line is to be
indented if the line length exceeds CHARS. The default
value for number is 0.

LINES =number sets the number of lines to be printed per page.
The default value for number is 66.

MARGIN =number sets the left margin.

PAGE = number sets the physical page size as number of lines.
The default value for number is 66.

QUERY prompts you for each parameter.

TAB specifies that tab characters are to be translated into the
appropriate number of spaces.

XLATE = X'aabb’ specifies a one-character translation to be
performed by the filter.
aa is the character in hex format to be translated.
bb is the character in hex format aa is translated to.

To determine the parameters to set for:

page size multiply form length in inches by the number of lines
per inch.

lines per determine the number of blank lines at the bottom of

page every page. The default number of blank lines is 0. If

LINES = PAGE, then text can be written on every line
of each page. LINES cannot exceed PAGE.

characters multiply form width in inches by the number of

per line characters per inch (10 or 12). Use CHARS to set the
maximum number of printable characters per line. If a
line is greater than CHARS, then TRSDOS
automatically breaks the line at the maximum length,
and continues printing at the next line. The line is
indented if you have specified INDENT.

1-94

Examples

Be sure that you have SET =FF to its filter program FORMS/FLT and
you have FILTERed the printer to *FF with the commands:

SET *FF TO FORMS/FLT (ENTER)
FILTER *PR *FF (ENTER

FORMS (ENTER)
displays the current parameter values.

FORMS (CHARS=80, INDENT=6,PAGE=51,LINES=45,FFHARD)
(ENTER)

allows a maximum of 80 characters per printed line. If a line contains
more than 80 characters, the excess is printed on the next line and
indented 6 spaces. The physical page size is set to 51 lines, and 45
lines can be printed on a page.

FFHARD allows the printer to manage top-of-form. Most printers that
support top-of-form have a control that must be set to the length of
the paper for FFHARD to function properly. The default for this control
is usually 66 lines per page. Not all printers support top-of-form.
Check the owner's manual for the printer you are using for information
on top-of-form control.

FFHARD is faster than sending a series of line feeds. If you are using
the system spooler, FFHARD requires less space in memory and on
disk. See the SPOOL command.

FORMS (MARGIN=18,CHARS=80, INDENT=16) (ENTER

causes all lines to start 10 spaces in from the normal left-hand
starting position. Any line longer than 80 characters is indented 16
spaces (6 spaces after the margin) when wrapped around, so it is
printed starting at position 16.

FORMS (TAB,ADDLF) (ENTER)

specifies that tab characters are to be translated into the appropriate
number of spaces. Also, a linefeed is sent to the printer every time a
carriage return is sent.

FORMS (XLATE=X’2A2E°) (ENTER

translates all hexadecimal 2A characters (asterisks) to hexadecimal
2E characters (periods).

1-95

Sample Uses

Suppose you have a payroll program that contains all of your
employees’ payroll information, and that prints checks of the size 4"
x 7.

To instruct your computer to print a form 4” x 77, issue the following
commands:

FILTER *PR *FF (ENTER
FORMS (CHARS=55,LINES=28,PAGE=24) (ENTER)

Now when you run your payroll program, you can print the checks on
the proper size form.

FREE

Drive
Driive o

Command
FREE [:drive] [(parameter)]

Lists the amount of space that is free (available for use) and the
number of files on each drive, if no drive is specified. If drive is
specified, displays a free-space map of the disk in that drive.

You can use FREE to see how many files are on a disk. You can also
use FREE to see a table containing information about each disk in
your computer.

The parameter is:
PRT sends output to the printer.

FREE displays free-space information about each enabled disk in the

following format:

gz/e2/83 Free Spacs = 94.58K/ 180.88K Files =~ 896/128
qe/17/83 Fres Space = G1.5EK/ 189.08K Files = §7/128

1. Drive number.
2. Disk name.

3. Creation date (the date the disk was formatted or was the

destination in a mirror-image backup).

4. Amount of free (unused) space on the disk. The amount is given in

kilobytes (K). One K= 1024 bytes.

5. Total amount of space (used and unused) on the disk. The amount

is given in kilobytes.

6. Number of free (unused) directory slots. A file can take one or

more directory slots.

7. Total number of directory slots on the disk. Some of these are

used by the operating system.

FREE displays a free space map of the specified disk in the format
shown below.

1. Disk size.
2. Drive type: floppy or hard.

3. Number of heads (surfaces on the disk) that contain data for this
logical drive.

4. Density of the disk: SINGLE or DOUBLE.

5. Amount of space (in kilobytes) in each granule on the disk. One
kilobyte, or K, equals 1024 bytes.

6. Space allocation map, which shows the organization of data on the
disk.

The numbers in the left column represent the cylinders on the disk.
Cylinders are divided into granules, or grans. The status of each
gran is represented by a character on the map, as follows:

-= Available for use.

*=| ocked out (unavailable because it is flawed).
X=Currently used by system or user files.

D= Currently used by the system’s directory files.

On hard disks, Xindicates that a granule is in use or is flawed. The
asterisk () is not used on hard disks.

Examples
FREE (ENTER)

displays free space information about each enabled disk.
FREE :0 (PRT) (ENTER

displays a free space map of the disk in Drive 0. The map is also sent
to the printer because you specified the PRT parameter.

HELP

Utility
HELP [filespec [+][keyword] [(parameter)]]

Displays information about TRSDOS keywords.

filespec is the file specification for the HELP data file you want to
access. Your TRSDOS system diskette contains one HELP data file,
DOS/HLP. The extension /HLP is optional.

keyword is the TRSDOS command, filter, or driver about which you
seek information.

parameter specifies additional information for the HELP display. You
must enclose parameters in parentheses and separate them with
commas. parameter may be any of the following:

P prints the information on the printer as well as the screen.

V cancels video restoration.

R cancels reverse video when displaying information on the
screen.

S displays only commands that match the command partspec
you indicate with keyword.

If you include keyword or parameter you must include filespec.

Some applications programs may have HELP data files for information
about the application. You can use an asterisk in the HELP command
line to indicate a global search for the keyword in all HELP data files.

The asterisk must immediately precede keyword.

If you type HELP at the TRSDOS Ready prompt, HELP displays a
reference menu. The menu shows possible syntax combinations you
can use with the HELP command from the TRSDOS Reacdy prompt.

The menu also lists the HELP data files currently on-line (available).
The HELP data files are called categories in the reference menu. The
menu displays the message:

Enter calegory or press <ENTER> toexit:

In response to this prompt, you can enter DOS or DOS keyword. You
can also include parameters.

If you press (ENTER) or BREAK), HELP returns to the TRSDOS Ready
prompt. If you enter an invalid category or omit category, HELP
redisplays the reference menu.

When you enter DOS, HELP displays a list of all keywords available
in DOS, followed by the message:

Enter keyword or press <BREAKY to ewxil:

HELP returns to the TRSDOS Ready prompt. if you press (ENTER),
HELP redisplays the list of keywords.

If you enter DOS keyword, HELP displays the information available in
DOS for that keyword and the message:

Enter keywnrd or press <BREAKD to exit:

If the information for a keyword requires more than one screen, HELP
displays a message that you should press any key to see additional
information.

if you press (BREAK), HELP returns to the TRSDOS Ready prompt. If
you enter another keyword, HELP displays the information available in
DOS about that keyword. If you enter an invalid keyword or press
(ENTER), HELP redisplays the list of keywords.

if an application program contains a HELP data file, you can enter
*keyword from the reference menu to perform a global search of all
HELP data files for category. When performing a global search, HELP
searches all available data files for keyword. While searching, HELP
dispiays the message:

HGlobal Search in File: filename

When HELP finds the keyword in a data file, HELP displays the
keyword information on the screen and the message:

Press <BREAK? 1o exit or <ENTER> to continue
Glotral Scan

if you press (ENTER), HELP continues the search for keyword in other
data files. When HELP completes the global search, HELP displays
the message:

lobal Search in Filecfilename
END of Glebal Scan

Press <ENTER?® to exit:

When you press (ENTER!, HELP returns to the TRSDOS Ready
prompt.

Examples
At the TREDOS Ready prompt type:

HELP displays the reference menu.

1100

At the THSDOS Heady prompt type:

HELP DOS (ENTER)
HELP displays the list of all keywords in the DOS file.
At the TRSDGS Heady prompt type:

HELP DOS ATTRIB (ENTER)

HELP displays a screen of information available for the ATTRIB
command and prompts you to press any key for additional
information. After you press a key, HELP displays additional
information and prompts you to enter another keyword or press

(BREAK) to exit.

1-101

LIB

Command
LiB

Displays a listing of all system commands in Libraries A, B, and C.
You can use LIB to see a list of TRSDOS commands.

Library A contains the primary TRSDOS commands, Library B
contains the secondary commands, and Library C contains the
machine-dependent commands.

Exampie

displays a list of the TRSDOS library commands.

Library <A
Append Cat Cls Copy Device Uir Do
Filter Lib Link List Load Memory Hemove
Rename Reset Houte Run Set Tof

Library =B

Croate Date Debug Dump
Verity
Forms Sefcom Setld Spool Sysgen System

Technical information

Library A is located in the SYS6/SYS system module, Library B is
located in the SYS7/SYS system module, and Library C is located in
the SYS8/SYS system module. You can remove any of the three
system modules if you will not be using their commands. (Use the
PURGE or REMOVE library commands to delete system modules.)

1-102

LINK

Advanced Programmer’s Command
LINK devspec? [TO] devspec2

Links together two logical devices; both must be enabled in the
system.

You can use LINK to get a printout of the data displayed on your
video display. You can also use LINK to write data displayed on the
screen to a disk file.

To “unlink” the devices, use the RESET command.

Be careful if you make several links to the same device. You could
create an endless loop and hang up the system.

Examples
LINK *DO =PR (ENTER

links the video display (*DO) to the line printer (+PR). All output sent
to the display (devspecT) is also sent to the line printer (devspec?2).

NOTE: Although all output to the video display is also sent to the
printer, any output sent individually to the printer (such as an LPRINT
from BASIC) is not sent to the video display. This is because the
order of the devices in the link command line is important. Once
linked, any information sent to devspec1 is also sent to devspec2,
and any information requested from devspec? can also be supplied
by devspec2. However, information sent to devspec2 is not sent to
devspecT, nor can information requested from devspec2 be supplied
by devspect.

LINK *PR =DO (ENTER

links the line printer to the video display. All output sent to the printer
(devspecT) is also sent to the video display (devspec2).

Linking a Device To « File

It iIs not possible to directly LINK a device to a file. To link a device to
a file, folow this procedure:

® Use the ROUTE library command to create a "phantom”
device and route it to the file.

® Link the device to the phantom device using the LINK fibrary
command.

NOTE: Do not use the SYSGEN library command if you currently have
a device linked to a file. The linked file is shown as open every time
you power up or reset the system. You can overwrite other files very
easily if you switch disks with the linked file open.

1-103

The following example shows how to link your line printer to the disk
file PRINT/TXT on Drive 0 using a phantom device.

ROUTE *DU TO PRINT/TXT:@ (ENTER

creates the phantom device DU and routes it to the disk file
PRINT/TXT on Drive 0. If PRINT/TXT does not exist, it is created. If it
already exists, data sent to the file is appended onto its end.

LINK *PR xDU (ENTER

links the printer to *DU, which in turn is routed to PRINT/TXT. All
output sent to the line printer is also sent to *xDU (that is, written to
PRINT/TXT).

NOTE: PRINT/TXT remains open until you issue a RESET DU
command. To break the link between the printer and PRINT/TXT
without closing the file, use the RESET #PR command. See the
ROUTE and RESET library commands; the "Using the Device-Related
Commands” section, and Appendices | and K.

Sample Use

Suppose you want your computer to be accessed by another
computer or terminal. If your computer is at the office you can use a
remote terminal as the keyboard and display of your computer. First,
set the Communications Line device (+CL) and use SETCOM to
specify WORD =8 and PARITY =NO with the commands:

SET *CL TO COM/DVR ENTER
SETCOM (WORD=8,PARITY=NO) (ENTER)

then issue commands:

LINK *DO +CL
LINK *KI «CL

to link the video display and keyboard to the RS-232-C interface. This
lets your computer act as a "host” and be accessed by a remote
terminal via the RS-232-C hardware.

While these links are in place, anything typed on your computer’s
keyboard or the remote terminal keyboard is treated as if it originated
at your keyboard. Text displayed on your computer’s screen is
transmitted to the remote terminal.

Note: Some programs display data using a direct access method. This
data is not displayed on the remote terminal. For more information
about direct access, see the Model 4/4P Technical Reference Manual
and the @VDCTL SVC.

1-104

LIST

Command
LIST filespec [(parameters)]

Lists the contents of filespec.
You can use LIST to see the contents of a file on a disk.
The parameters are:

ASCII8 displays the graphic characters and special characters in
a file, along with the text.

NUM numbers the lines in ASCII text files.

HEX specifies hexadecimal output format. When you specify the
HEX parameter, NUM and LINE are ignored.

TAB = number specifies that tab stops are to be placed every
number of spaces apart for ASCH text files. Each tab
character (ASCIl 9) encountered causes a jump to the next
tab stop. The default value for number is 8.

PRT directs output to the printer.

LINE = number sets the starting line to number. If you omit the
LINE= parameter, TRSDOS uses 1. This parameter works
only with ASCII files.

REC = number sets the starting record number to number. If you
omit the REC = parameter, TRSDOS uses @. The REC ==
parameter is used only with the HEX parameter.

LRL=number sets the logical record length to be used to display
a file with a record length of number. If you omit the LRL =
parameter, TRSDOS uses the logical record length of the
file. The LRL = parameter is used only with the HEX
parameter.

LINE cannot be abbreviated, and the abbreviation for ASCI8 is A8.

If you omit a file extension with LIST command, TRSDOS looks for
the filename with the extension /TXT. If TRSDOS cannot find the
filename with the /TXT extension, it looks for filename. If you specify
filename with the extension / you can eliminaie the search for
filename/TXT.

Press SHIFT(@) to pause a list. Press any key to continue. Press

When you use the HEX parameter, filespec is listed in the following
format:

1-105

P

pandiag -

1. Current logical record of the file in hex notation, starting with
record 0.

2. Offset from the first byte of the current logical record (in hex
notation).

3. Hex representation of the byte listed.

4. ASCHl representation of the byte. A period is used for all
non-ASCH bytes.

Examples
LIST TESTFILE:® (ENTER)

searches Drive 0 for TESTFILE/TXT. If not found, it searches for
TESTFILE.

LIST MONITOR/CMD C(HEX,LRL=8)
lists MONITOR/CMD in the hexadecimal mode using an LRL of 8.

prints a listing of REPLY/TXT on the printer, numbering each line that
is printed. Lines are numbered beginning with 00001. Any tab
character encountered causes a jump to the next tab position (every
10th column).

LIST TESTFILE/UBJ (HEX,REC=5) (ENTER
list TESTFILE/OBJ in the hex mode, beginning with record 5.
Sample Use

Suppose you create a JCL file that contains a series of commands
you often execute in a given order. To review the contents of the file,
type:

LIST STARTUP/JCL (ENTER

1-108

LOAD

Advanced Programmer’s Command
LOAD [(parameter)] filespec

Loads a machine-language program file (without executing it) and
then returns to THSDOS Ready.

You can use LOAD to pre-load assembly language routines that
programs written in a language such as BASIC can call.

The parameter is:
X loads a file from a non-system disk.

The file must be in load module format. Do not use it to load BASIC
program files, The default file extension for the LOAD command is
/CMD.

Programs to be loaded must reside at or above the address X'3000'.
Examples

LOAD STATUS/CMD (ENTER)
loads the file STATUS/CMD into memory.

LOAD (X)> PROGRAM/CIM (ENTER)

loads PROGRAM/CIM from a non-system disk. The system prompts
you to insert the disk with the desired file on it with the message:

inserl SOURCE disk<ENTER?

After the file is loaded, you are prompted to put the system disk back
in Drive @ with the message:

fngert SYSTEM diszh cENTER>

The load is now complete.
Sample Use

Often several program modules must be loaded into memory for use
by a master program. For example, suppose PAYROLL/PT1 and
PAYROLL/PT2 are modules, and MENU/CMD is the master program.
Then you could use the commands:

LOAD PAYROLL/PT1 (ENTER)
LOAD PAYROLL/PT2 (ENTER

to get modules into memory, and then type: MENU to load and
execute MENU.

1-107

LOG/CMD

Utility
LOG :drive

Lets you exchange one type of disk for another. LOG informs the
system that it needs to re-examine the specified drive to determine
the disk type, cylinder count, density, number of sides, and location of
the directory.

:drive can be any enabled drive in your system. If you omit drive, the
system re-examines Drive 0.

Use LOG whenever you switch diskettes in Drive 0. If you switch from
TRSDOS 06.02.xx to TRSDOS. 06.02.xx, you can use LOG, instead
of resetting the system. But if you switch from TRSDOS 06.xx to
TRSDOS 06.xx, you must press RESET.

Some minimum system diskettes do not contain the LOG command. If
this is the case with your Drive 0 diskette, you must reset the system,
instead of using LOG.

After you enter the LOG command, if you are changing systems
diskettes in Drive 0, TRSDOS displays the message:

S

When TRSDOS displays this message, remove the diskette in Drive
0. Insert the new diskette and press (ENTER). TRSDOS is now aware
of the fact that Drive 0 contains a different type of system diskette.

1-108

MEMORY

Advanced Programmer’s Command
MEMORY {(parameters)]

Allows you to reserve a portion of memory, display or change the
current HIGHS and LOWS, modify a memory address, or begin
executing at a specified memory location. HIGH$ has to be higher
than LOWS.

You can use MEMORY to find out which area of memory you can use.
The parameters are:

CLEAR = vajue fills memory from hex 2600 to HIGH$ with value.
value in the format X'nn'. If you do not specify value,
memory is filled with the hexadecimal value 60 (null).

HIGH = address resets HIGHS to the address you specify.
address must be less than the current value of HIGHS.
When you reset HIGHS, TRSDOS inserts a high memory
header into memory. TRSDOS places the header in the last
10 bytes preceding the address you specify. TRSDOS
displays a message informing you that the header is in
memory.

LOW = address resets LOWS to the address you specify. address
must be greater than Hexadecimal 25FF. If you omit
address, TRSDOS displays the current value of LOWS.
Subsequent MEMORY or system level commands reset
LOWS to its default value of Hexadecimal 2600.

ADD = value displays or modifies a byte or word of memory. value
can also be a memory address or an alphabetic character A
through Z, specifying a TRSDOS flag in the system flag
table. See the Model 4/4P Technical Reference Manual for
additional information on the status flag table. If you include
the WORD or BYTE parameters, ADD modifies the address
or flag that you specify with value. If you omit WORD and
BYTE, ADD displays the address or flag that you specify
with value.

WORD = word changes the contents of ADD and ADD -+ 1 to
word.

BYTE = byte changes the contents of ADD to byte.

GO = address transfers control to address. If more than one
parameter is specified, the GO parameter is always
executed last.

address is any memory address in hexadecimal or decimal notation.
word is any value in the range 0000 - FFFF hexadecimal or 0 - 65535
decimal. byte is any value in the range 00 - FF hexadecimal or

0 - 255 decimal.

1-109

Examples
MEMORY (ENTER)

displays HIGH$ (the highest unused memory location) and LOWS (the
lowest reserved memory location) in the hexadecimal X’nnnn' format.

MEMORY C(HIGH=X‘E1008) ENTER

sets HIGH$ to hexadecimal memory address E100, as long as the
existing HIGHS is above X'E100". The MEMORY command moves
HIGH$ lower in memory.

MEMORY (ADD=X‘650¢ ‘) (ENTER)

displays the contents of hexadecimal memory addresses 6500 and
6501 in the following format:

? 9

The address specified in hexadecimal notation.

The decimal equivalent of the address.

The contents of address and address + 1, in MSB-LSB format.
The current HIGHS address.

The current LOWS address.

MEMORY (ADD=X‘E1080‘,W0RD=X'3E8A") ENTER

O I W Ry

modifies hexadecimal memory locations ADD (E100) and ADD + 1
(E101), changing them to the value of WORD. The following display
appears:

The address specified in hexadecimal notation.

The decimal equivalent of the address.

The old contents of address and address + 1, in MSB-LSRB
format.

The new contents of address and address + 1, in MSB-1L.SB
format.

The current HIGHS$ address.

The current LOWS address.

RN WA -

Do

1-110

MEMORY (ADD=X‘E168‘,BYTE=X'C2’) ENTER

changes the BYTE of memory at hexadecimal address E100 to
hexadecimal C9. The display after executmg this command is:

The display is identical to the last example, except that the command
modified a BYTE instead of a WORD.

MEMORY (GO=X'E180') (ENTER
transfers control to hexadecimal memory address E100.
Error Conditions

If you specify an address for LOW that i rs £q I to or greater than the
address for HIGH. TRSDOS displays a “Fange eror “ message.
TRSDOS also displays this message if you attempt to set HIGH
greater than the current value of HIGH or if you attempt to set LOW
less than X‘2600".

Some applications programs set a bit in CFLAGS$ that does not allow
you to alter HIGHS$ or LOWS. If you attempt to alter these values
when thrs bit is set, TRSDOS displays a “No memory spac
a ‘ error message. The application program must reset the bit
in CFLAGS. See the Mode/ 4/4P Technical Reference Manual for
additional information on CFLAGS.

1-111

PATCH

Method A

Advanced Programmer’s Utility
PATCH filespec (patch commands)

Method B

Advanced Programmer’s Utility

PATCH filespec1 USING filespec2 [(parameters)]

Lets you make minor corrections in any disk file by (1) typing in the
patch code directly from the command line (Method A), or (2) creating
an ASCII file containing patch information (Method B).

You can use PATCH to make minor changes in your own
machine-language programs. You need not change the source code,
reassemble it, and recreate the file. You can use PATCH to make
minor replacement changes in data files, also.

filespect is the file to be changed and /CMD is its default extension.
filespec2 contains the patch commands. filespec2 can contain only
ASCH characters and /FIX is its default extension.

The patch commands are:

address = value identifies the PATCH as a patch by “memory load
location.” It changes the contents of memory beginning with
address to value.

Drecord, byte = value identifies the PATCH as a “direct modify
patch.” record telis which record contains the data to be
changed. It is a hexadecimal number from 00 to FF. byte
specifies the position of the first byte to be changed. ltis a
hexadecimal number from 0@ to FF.

Frecord, byte = value lets you make sure that a patch is applied to
the correct place in memory, when used in conjunction with
the D patch command. Frecord,byte follows Drecord,byte. If
the location specified with the D patch command does not
contain the data specified with Frecord,byte , the PATCH
aborts. Frecord,byte is also used with the REMOVE
parameter to remove a patch and replace it with the original
data.

Lcode identifies the PATCH as a "library mode patch.” The
PATCH applies to either the SYS6/SYS, SYS7/SYS, or
SYS8/8YS library command module, code is the binary
coded location in the format nn where the change begins.

address is a four-digit hexadecimal value in the format X’'nnnn’ which
is the memory load address for the change.

1-112

value can be either a series of hexadecimal bytes in the format nn nn
nn..., or a string of ASCII characters in the format "string.”

The parameters are:

YANK removes the PATCH specified by fifespec2 from filespec.
The specified PATCH contains code in the address format.

REMOVE removes the PATCH specified by filespec2 from
filespec1. The specified PATCH contains code in the
Drecord,byte format.

An address patch command changes a file by "memory load
location.” It adds the patch code to the end of the filespec and then
makes the changes beginning at address each time the file is loaded.
You can use YANK to remove the added code from filespec. This type
of patch can be applied only to standard “load modules” or command
(/CMD) files.

A Drecord.byte;Frecord,byte patch command changes a file by
"direct modify patch.” It changes a file by directly applying the patch
code to the specified record and byte of filespec. When you BUILD a
file containing patch commands in this format, you can REMOVE the
patch.

An easy way for you to find the record and byte of filespec that you
want to patch is to list filespec using the LIST library command with
the HEX parameter. Remember that the first record in a file is record
0, not record 1.

A direct modify patch can be specified on a command file, as well as
from a file. The format for patching on a command line is:

PATCH filespec (Drecord,byte=value:
Frecord,byte=value

Notice the colon. On a command line, use a colon to place more than
one item on a line. In a patch file, use a semicolon. Also, notice that
you must include the Find portion of the patch on the line. If your
patch is long, break it into several command lines.

Lcode patch command patches are supplied by Tandy for you to
implement changes to TRSDOS. You have to BUILD a patch file to
apply this type of PATCH.

Examples

These examples are used to show the syntax and development of the
PATCH command, so do not execute them.

PATCH MONITOR/CMD (X’E180’=C3 66 cD 83 40)
(ENTER)
patches the file MONITOR/CMD by the memory load location method.

The six bytes beginning at hexadecimal E100 are changed. During
the PATCH operation, the following message is displayed:

1-113

When the operation is completed, this message appears:

x is the number of lines of patch code that were installed.

Since there is no filespec used for the patch code, the name CLP
(Command Line Patch) is assigned to the patch code. You can use
this name to later YANK the patch from MONITOR/CMD.

PATCH PROFILE/CMD (DB2,45=C364 66 68 76:F 82,45
=C311 45 FE 45)

causes the patch utility to examine record 2, byte X'45'. If the
sequence C3 11 45 FE 45 is found at that location, the sequence C3
64 66 69 76 is written in its place. If the find string is not found, no
bytes are altered.

Error Conditions

If you omit filespec in a PATCH command, TRSDOS displays a
"PROGRAM file name requiréd” error message. Include filespec and
try the command again.

If you misspell filespec, TRSDOS displays a “Fite not in direciony”
error message. Check your spelling and try the command again.

If you attem to YANK an X patch that is not in the file, TRSDOS
displays a "Carit yank, h ot in load Hie” error message.
TRSDOS also displays this message if you attempt to YANK a patch
that was applied to the same file more than once and has been
previously yanked.

If you specify an incorrect overlay number in an L patch to SYS6,
SYS7, or SYS8, TRSDOS displays a "L G it found” error
message.

If there are errors in the /FIX file, TRSDOS may display any of the
following error messages:

sinvalid library formad”

tRatch input format error

"Nor

i

X digh encountered

If the file in an X patch is not in load file format, TRSDOS displays a
"Load file format error” message.

If the /FIX file is too large, TRSDOS displays a “ix file too big —
pariition 1" error message. You must split the file into more than one
file.

1-114

Examples
Using BUILD To Create a PATCH File

You can use the BUILD library command to create a PATCH file. (See
the "Building a File” section of the BUILD library command.) A PATCH
file can contain only ASCil characters.

Each line in a patch file is either a patch command or a comment.
Comment lines begin with a period and are ignored by the patch
utility. Use comments in patch files to document the changes that you
make. You can append a comment onto the end of a patch command
by using a semicolon to separate the two parts.

These examples are used to show the syntax and development of the
PATCH command, so do not install them.

The data in BACKUP/CMD on Drive 0 is changed to 23 3E 87
beginning at hexadecimal 6178. The data beginning at hexadecimal
61AQ is changed to FF 00 00. This is an example of a memory load
location patch, and since the patch is added onto the end of
BACKUP/CMD, you can use the YANK parameter to remove it.

Use the BUILD library command to create the following PATCH file
named TEST/FIX:

.This patch modifies the SYS2 module.
D0B,49=EF CD 44 65;F0B,49=DD 3A 33 44
D0B,55=C3 00 00;F0B,55=EF 44 55

.End of patch

Now, type in the command line:
PATCH SYS2/SYS.PASSWORD USING TEST/FIX (ENTER)

changes the data specified in SYS2/SYS.PASSWORD to the data in
TEST/FIX. Since the data beginning at record 0B, byte 49 and 55 is
directly changed on disk, this is an example of a direct disk modify
patch. The Find patch commands let you make sure you are patching
the correct place in memory.

Using PATCH on a TRSDOS System File

When Tandy releases a modification to TRSDOS, you receive a
printout of the exact patch commands that you must use to make the
change.

Suppose Tandy sends you the patch information for a file named LIB1
that contains the following patch code:

{USE LIB1 TO PATCH SYS6/SYS.
L54
X'5208" =32 20 DE AF 00 C3 66 00

1-115

Use the BUILD library command to create the file LIB1, and type in
the lines exactly as they appear on the printout. After you end the file,
type in the command line:

PATCH SYS6/SYS:1 USING LI1B1 (ENTER

This changes the data specified in SYS6/SYS on Drive 1 to the data
in LIB1/FIX. Since you did not specify an extension to LIB1, it
defaulted to /FIX. This patch is in the memory foad location mode.
Library patches can also be done with the direct disk modify mode. To
be sure that you do not patch the disk in Drive 0, specify the drive
number in the filespec (such as SYS6/SYS:2) or write protect the disk
in Drive 0.

PATCH lets you implement any changes to TRSDOS that may be
supplied by Tandy. This way, you do not have to wait for a new
release of TRSDOS.

To make a change, follow these general steps:
1. Make a backup copy of the diskette to be patched.

2. Insert the TRSDOS diskette to be changed into one of the drives.
(Make sure the diskette is “write-enabled.”)

3. In the TRSDOS mode, use the BUILD library command to create a
PATCH file containing the patch commands specified in the
information provided by Tandy.

4. Issue the appropriate PATCH command.

5. After the patch is complete, test the patched diskette in Drive 0 to
see that it is operating as a TRSDOS system diskette. You have to
reset the computer before you can test the diskette.

1118

PURGE

Command
PURGE [partspec | -partspec].drive [(parameters)]

Deletes all or some files from the disk in drive.

If you specify partspec, PURGE deletes all files that match partspec.
If you specify partspec, preceded by a hyphen (-}, PURGE deletes all
files that do not match partspec. If you include a drive number with
partspec, you must include the colon (:)

If you don’t know the file’s password but you know the disk’'s master
password, PURGE provides a way to delete the files. With the
REMOVE command you must know the file password to delete a file.
With the PURGE command, you must specify the disk's master
password unless the master password is PASSWORD.

The parameters are:

QUERY = NO automatically removes files without prompting for
each one.

MPW ="password” states the disk master password

INV removes the invisible files as well as the visible files.

SYS removes the system files as well as the visible files.

DATE ="date1-date2” deletes the files that were modified on or
after date? and on or before date2.
="date” deletes the files that were modified on date.
= "date-"deletes the files that were modified on or after
date.
="-dlate” deletes the files that were modified on or before
date.

Dates must be in the format mm/ddiyy.

Before using the PURGE command, you can see which files will be
purged by executing a DIR command with the same parameters.

Once you enter the PURGE command, TRSDOS prompts you for the
disk’s password (if it is not PASSWORD), unless you specified it with
the MPW parameter.

Then, the system displays the files one at a time. Unless you specify
QUERY =NO, it prompts you to remove the file or keep it. Respond
with (Y) to remove the file, (N or (ENTER) to keep it.

NOTE: BOOT/SYS and DIR/SYS cannot be purged and do not appear
during execution of any PURGE command.

Examples
SURGE :8 (MPW="SECRET") ENTER)

purges all visible files from Drive 1. Before removing each file, the
system asks if you're sure you want it to do so.

1-117

PURGE /BAS:1 (a=N0) (ENTER

purges all visible files with the extension /BAS from Drive 1. You are
not questioned before each file is removed, as QUERY is specified as
NO.

PURGE /$$5:2 (ENTER)

purges all visible files on Drive 2 whose file extension contains 3
characters and ends in the letter S.

PURGE -/CMD:8 C(INV) (ENTER)

purges all non-system files from Drive 0 except those with the
extension /CMD.

PURGE :1 (DATE="g2/81/81-") (H

purges all visible files on Drive 1 with modify dates of February 1,
1981 or later. You are questioned before each file is removed.

Error Conditions

When you use a PURGE command in a JCL file you must specify the
QUERY =NO parameter. If you omit this parameter, TRSDOS
displays an "favalid command during < DO processing” error
message.

If you specify the wrong password, TRSDOS displays an “invalid
master password error message. If the master password 15 not
PASSWORD, you must specify it to PURGE a file.

Sample Use

Refer to the sample in the BACKUP command section. Now that you
have moved all of the new files to the disk in Drive 1, you can remove
all the new files on the disk in Drive 0 by issuing the command:

PURGE /NEW: @ (ENTER)

Now you have two separate disks: one with new employee files on it
and one with old employee files on it.

1-118

REMOVE

Command
REMOVE filespec [filespec ...]
REMOVE devspec [devspec ...]

Deletes filespec from the directory and frees the space allocated to it,
or deletes devspec from the device table.

You can use REMOVE to delete a file that you don't need to use
anymore. You can also REMOVE a device that is no longer needed.

Examples
REMOVE ALPHA/DAT:@ BREAKER/DAT:8 (ENTER

deletes ALPHA/DAT and BREAKER/DAT from the directory on Drive 0
and frees all space allocated to them.

REMOVE MIDWEST/DAT.SECRET (ENTER)

deletes MIDWEST/DAT. If the file is protected at a level of RENAME
or higher, the owner password must be used to remove the file. If you
supply the user password, the error message "iliegal access
attempted to protected file” is displayed. If you supply the wrong
password, the error message "Fiie access denjed’ is displayed.

REMOVE »LU ENTER)
removes the user-created device =LU from the device table.

NOTE: A device can be removed only if it is pointed NIL in the device
table. If a device is not pointed to NIL, it must first be reset with the
RESET library command before it can be removed.

TRSDOS does not permit the removing of the system devices: =JL,
=K1, DO, %8}, 80, and «PR. Attempting to remove these devices
produces the error message "Protected system device.”

Sample Use

Suppose you have a file of temporary employees that you hire for
inventory. All of the temporary employees’ files are in a file named
EMPLOYEE/TEM. When you complete the inventory, you can remove
this file with the command:

REMOVE EMPLOYEE/TEM (ENTER

1-119

RENAME

Command
RENAME filespec1 [TO] filespec2

RENAME devspec1 [TO] devspec2

Changes a file’s name and/or extension from filespec? to filespec2. It
also changes a device name from devspec? to devspec2.

You can use RENAME to change the name of a file or a device.

if you wish to rename a file that contains an extension to a filtename
that does not contain an extension, you must include the slash {/) in
the new file name. If you omit the slash, TRSDOS assumes the
extension of the source filename for the destination filename.

RENAME does not change the file’'s password, contents, or position
on the disk. (See the ATTRIB command to change the password.) If
filespect is password protected, the password must be specified or
an error message will result.

RENAME does not change a device’s routing, filtering, linking, or
setting. devspec? must be an existing device, and devspec2 must be
an unused device name.

You cannot RENAME the system devices: =Kl, *DO, +PR, «8i, #80,
and =JL.

Examples
RENAME TEST/DAT:@ TO OLD/DAT(E
renames TEST/DAT on Drive 0 to OLD/DAT.

renames TEST/DAT on Drive 0 to REAL/DAT. Since you did not
specify an extension for filespec2, it defaulted to the extension on
filespec1 (DAT).

RENAME TEST/DAT: ¢ TO REAL/ (ENTER
renames TEST/DAT on Drive 0 to REAL (without an extension).

RENAME DATA/NEW.SECRET:1 TQ /0LD (ENTER

renames the password protected DATA/NEW.SECRET on Drive 1 to
DATA/OLD.SECRET. Since you did not specify a filename for
filespec2, it defaulted to that of filespec’. RENAME does not change
or delete passwords, so the password defaulted also.

renames the device *UD to «TX.

1-120

Error Conditions:

If you attempt to rename a file to a filename that already exists on
that diskette, TRSDOS displays a "Duplicate file name’ error
message.

If you specify an illegal filespec or attempt to use devspec and
filespec in the same RENAME command, TRSDOS displays a
“Specification error” message.

If you omit the destination filespec2 or devspec2, TRSDOS issues a
"Rename it to what?” error message. You must specify source and
destination filespecs and devspecs.

1-121

REPAIR (REPAIR/CMD)

Utility
REPAIR :drive

Updates and modifies information on floppy disks produced by Radio
Shack Model | operating systems and computers so TRSDOS Version
6 can use them.

drive is any floppy drive currently enabled in the system (except
Drive 0).

After REPAIR is complete, you should be able to copy any file off the
modified diskette.

Once a disk is modified by TRSDOS, the operating system that
created it may not be able to read it.

TRSDOS 1.2 and 1.3 disks shouid NEVER be repaired. Use the
CONV utility to copy programs from them.

Using REPAIR, you can convert the following list of operating system
diskettes to TRSDOS Version 6 diskettes:

® Model | TRSDOS 2.0, 2.1, 2.2, 2.3, 2.3a
Examples
REPAIR :1 (ENTER

updates information on the diskette in Drive 1 so that TRSDOS can
use it.

Error Conditions

TRSDOS assumes that Drive 0 always contains a valid system disk. If
you attempt to REPAIR a diskette in Drive 0, TRSDOS displays a
"Can't REPAIR Drive @ error message.

1-122

RESET

Advanced Programmer’s Command
RESET devspec
RESET filespec

RESETSs a system device to its normal condition in the DEVICE table.
You can also use RESET to close a file that has not been properly
closed.

Resetting a Device

A RESET devspec command removes any filtering, linking, or routing
that has been set to the device. Any open disk file that is connected
to the device is closed.

If devspec is a device you created (see the LINK and ROUTE library
commands), it is pointed at NIL when reset.

If devspec is a system device (=KI, DO, PR, %8I, SO, and =JL}, it
returns to its start-up condition when reset.

To see that devspec has been pointed at NIL or returned to its
start-up condition, issue a DEVICE library command with the B
parameter, and examine the device table that is displayed.

You can use the REMOVE library command to remove the device
from the device table once it points at NIL.

Example

Suppose you have used the FORMS command to specify printer
parameters, or you have filtered, linked, or routed *PR.

RESET +PR (ENTER)

returns #PR to its start-up condition and disconnects the printer filter.

Resetting a Filespec
You can RESET an open filespec that has not been properly closed.

Improperly closed files result when (1) your system loses power and
files are left open, (2) you remove a disk from a drive and files are left
open, or (3) you reset your system while files are open, or (4) a
command aborts while files are open.

To see if any files on a disk are not properly closed, issue a DIR
library command. Any file that appears with a question mark (% after
it needs to be RESET before you can access it. Receiving the error
" File already oper” may also indicate a file is not properly closed.

1-123

Example

Suppose that your system lost power and there is a file named
PRINTER/DAT that is not properly closed.

RESET PRINTER/DAT (ENTER
closes the file named PRINTER/DAT and lets you access it.

1-124

ROUTE

Advanced Programmer’s Command
ROUTE devspec? [TO] devspec2
ROUTE devspecT [TO] filespec (REWIND)]
ROUTE devspec? (NIL)

Routes devspec1 to one of the following:
® another device (devspec?2)
® 3 disk file (filespec)
¢ nothing (NIL)

You can use ROUTE to create a device. You can also use ROUTE to
alter the flow of data from one device to another.

If devspec? does not already exist, ROUTE creates it.

To see how your devices are routed, use the DEVICE command. To
return the non-system devices to their normal start-up state, use the
RESET and REMOVE commands.

Examples
ROUTE xPR *DO

routes the printer (#PR) to the video display (*DO). All data normally
sent to the printer will be displayed on the screen.

ROUTE *PR TO PRINTER/DAT

routes the printer (*PR) to a disk file (PRINTER/DAT). All data
normally sent to the printer will be stored in a disk file named
PRINTER/DAT. If PRINTER/DAT already exists, the data is appended
to the end of the file.

RESET *PR

closes the PRINTER/DAT file and any subsequent output to *PR goes
to the printer. The PRINTER/DAT remains open until you execute the
above command.

ROUTE *PR TO PRINTER/DAT (REWIND)

routes the printer 1o PRINTER/DAT. If PRINTER/DAT already exists,
the system “rewinds” the file to the beginning. The contents of the file
will be replaced with the new printer data.

ROUTE *PR (NIL)
routes PR to NIL. TRSDOS ignores all output to the printer.
ROUTE *DU TO TEST/TXT:t

routes a user device (*DU) to a disk file named TEST/TXT in Drive 1.

1-125

If you ROUTE =CL to a file and you are receiving data from a
communications line (*CL), you might lose data if it is coming in at a
high speed. If so, use CREATE to preallocate file space before using
ROUTE. This makes data loss less likely because the system no
longer has to spend the time allocating more space.

Error Conditions

If you misspell devspec2 or specify a device that doesn't exist
TRSDOS issues the error message ‘Device not available,” Check
your spelling and try again.

if there are too many devices or routes, TRSDOS issues a ‘No
memory space available” error message. TRSDOS also issues this
error message if an application program sets Bit 0 of CFLAGS. The
application program must reset the bit in CFLAGS. See the Model
4/4P Technical Reference Manual for additional information on
CFLAGS.

Sampie Use

Suppose you want to route a report-producing program to a file
(instead of printing the report). Issue the command:

ROUTE *PR TO REPORT/DAT (ENTER

Now you can run the program and the report that it produces is routed
to the file REPORT/DAT. This means that you can print the report in
the file REPORT/DAT whenever you want by using the LIST
command.

NOTE: Remember, you must reset PR before listing the file so that it
will be properly closed.

1-126

RUN

Command
[RUN [(X)]] filespec [command text]

Loads a program named filespec into memory and executes it.

Typing RUN is optional. You can load and execute a program from the
TRSDOS Ready prompt by simply typing in the name of the program
(without the RUN).

The default extension for filespec is CMD.

X executes a program from a non-system disk for the single drive
user.

Command text is an optional value which the program you specified
may require.

When running a program, observe the following address restrictions:

RUN filespec must load above X'25FF’.
RUN (X) filespec must load above X'2FFF'.
Examples

RUN CONTROL/CMD (ENTER)

loads a program named CONTROL/CMD and executes it.
CONTROL/CMD

loads a program named CONTROL/CMD and executes it.
RUN PROG (ENTER)

loads a program named PROG/CMD and executes it. Since you did
not supply a file extension, it defaulted to /CMD.

RUN (X)) TRADERS/CMD: g (ENTER)

loads TRADERS/CMD from a non-system disk. First you are
prompted with the message:

Imsert SOURCE disk <ENTER>

Insert the disk containing the program into Drive @ and press ENTER).
After the program is loaded into memory, you are prompted with.

Insert SYSTEM disk <ENTER>

Insert the system disk back into Drive ¢ and press (ENTER); program
execution begins.

1-127

SET

Advanced Programmer’'s Command
SET devspec [TO] filespec [USING] [(parameters)}

Loads a driver of filter program into memory and sets it to a device.

devspec can be a system device or a phantom device (non-existing
device). If you specify a phantom device, you must use the FILTER
command to connect the phantom device to a system device.

filespec can be a TRSDOS filter program, your own filter program, or
a TRSDOS driver program.

parameters are values sent to the driver of filter program. They are
totally independent of the SET command and determined only by the
needs of your driver of filter program.

A driver program channels data to or from a device. If it is outputting
to a device, it converts data to the device’s format. If it is inputting
from a device, it converts the data to the computer’s format.

A filter program filters data before it is sent out or after it is received.

Once the device is SET, it remains SET until it is RESET. You cannot
SET an active device.

See Appendix | for a complete list of TRSDOS filters and drivers. See
Appendix K for more examples of setting devices, drivers and filters.

Example

Within TRSDOS is a driver program that sends printer output to the
parallel port. Suppose you write a driver program named SERIAL/DVR
that sends printer output to the serial port.

SET #SP TO SERIAL/DVR (ENTER)
loads SERIAL/DVR into memory and sets it to the device =SP.
ROUTE *PR TO =Sp (ENTER

routes data going to the printer to the device »SP. Now any input to
the printer goes to the SERIAL/DVR program. The SERIAL/DVR
program, in turn, sends the output to the serial port.

By using a LINK command instead of the ROUTE command, data
sent to *PR is sent to the TRSDOS parallel printer driver. It is also
sent (via the LINK) to the serial driver and then to the serial printer.

Example

Suppose you write a filter program named TRAP/FLT to change some
characters sent to *DO, the video display.

1-128

First, you need to load your TRAP/FLT program and set it to a
phantom device (this example uses =LC as the name of the phantom
device):

SET »LC TO TRAP/FLT
This causes =LC to point to TRAP/FLT.

Then, you need to use *LC (which points to the TRAP/FLT program)
to fiiter the data output to the video display:

FILTER DO =LC (ENTER)

Now, all data output to the video display is filtered through your filter
program.

SET *DU KSM/FLT USING FILEDAT/KSM (ENTER
FILTER »K1 »DU (ENTER

loads the Keystroke Multiply filter into memory and sets it to the
keyboard.

Error Conditions

if there are too many devices or routes, TRSDOS issues a “No
memory space avanable” error message. TRSDOS also issues this
error message if an application program sets Bit 0 of CFLAGS. The
application program must reset the bit in CFLAGS. See the Mode/
4/4P Technical Reference Manual for additional information on
CFLAGS.

1-129

SETCOM

Advanced Programmer’'s Command
SETCOM [(parameters)]

Adjusts the parameter values of the RS-232-C driver program
COM/DVR. Before you can use SETCOM, you have to install the
driver using the SET command (see Appendix).

You can use SETCOM to adjust your computer so that it can
communicate with another computer or a piece of computer
equipment.

The RS-232-C port lets you communicate with:
& another computer
® a modem
® a serial printer

You can include parameters to configure the RS-232-C port and
establish line conditions. if you omit parameters, TRSDOS displays
three lines of information about the current parameter settings, and
input and output fine conditions.

The parameters are:

DEFAULT returns alt parameters to their start-up values.

BAUD =number sets the BAUD rate to any supportable rate.
number can be 110, 135, 150, 300, 600, 1200, 2400, 4800,
9600. The default value for BAUD is 300.

WORD =number sets the word length to number. number can be
5, 6, 7, or 8. The default value for number is 7.

STOP =number sets the number of stop bits per word.
number is either 1 or 2. The default value for number is 1.

QUERY prompts you for each parameter.

BREAK =value sets the character that COM/DVR recognizes as
a BREAK function. value may also be Y or N. Y sets the
BREAK value to Hexadecimal 03 ((CTIRL) (€)). N sets the
BREAK value to Hexadecimal 80 ((BREAK)). if you specify @
for value, COM/DVR does not recognize any character as a
BREAK.

PARITY =switch sets parity. swifch can be ON, OFF, EVEN, or
ODD. You must enclose EVEN and ODD in quotes.

ON enables parity and retains its previous value, EVEN or ODD.

OFF disables parity.

EVEN enables parity and establishes EVEN parity

ODD enables parity and establishes ODD parity.

BREAK cannot be abbreviated.

1-130

Examples
SETCOM (ENTER)

displays the current configuration of the RS-232-C port in the following
format:

RS232 parameters: Basud=300, Word=7, Stlop=t, Par1ty=EVEN7 Break=X'03"
utput contrel: DTR=ON, RTS=0FF
Input control: RI=IGNORE, DSR=IGNORE, CD~IGNORE, CTS=IGHNORE

SETCOM (BAUD=380,WORD=8,5TOP=1, PARITY=NO) (ENTER

configures the RS-232-C using the values specified. Notice that
PARITY is specified as NO.

Technical Information

This command allows you to set the parameters to values that match
any other RS-232-C devices. The receiving side of the driver is
interrupt driven and contains an internal one-character buffer to
prevent loss of characters during disk I/O and other lengthy
operations. The system usually uses the =CL devspec to
communicate with the RS-232-C port.

TRSDOS can lose RS-232 characters during disk access if SMOOTH
is on. See the SYSTEM command.

If you are using a serial printer, (1) use SET to set *CL to COM/DVR
(see Appendix I}, (2) use SETCOM to set the proper parameters, and
(3) use the command:

ROUTE *PR TO «CL (ENTER

to direct output to the RS-232-C (rather than the standard parallel
port). Tandy printers do not require this procedure since they use the
parallel printer port.

The line condition parameters let you set up the conventions required
by most communicating devices.

The RS-232-C line output parameters are:

DTR = switch Data Terminal Ready
RTS =switch Request To Send

The RS-232-C line input parameters are:

DSR = switch Data Set Ready
CD =switch Carrier Detect
CTS =switch Clear To Send
Ri=switch Ring Indicator

1-131

switch is either YES or NO. You cannot abbreviate any of the
RS-232-C line parameters.

As specified by standard RS-232-C conventions, a TRUE condition
means a logical 0, or positive voltage. A FALSE condition means a
logical 1, or negative voltage.

DTR and RTS can be set to a constant TRUE by specifying the YES
switch. If DSR, CD, CTS, or Rl is specified YES, the driver observes
that signal and waits for a TRUE condition before sending each
character. If specified NO, the driver waits for a false condition before
sending a character. If not specified, that signal is ignored.

The BREAK parameter allows you to set a logical BREAK character.

This is useful in "host” type applications. The BREAK parameter
causes the serial driver to set the system break bit whenever a
modem break (extended null) or an ASCII logical BREAK is received.
The system pause bit is set whenever the hex code 60 is received.
The system enter bit is set whenever a carriage return (0D) is
received.

The default for BREAK is 3, so a (CTRLI(C) sets the break bit. Use
BREAK = value to set another character as the logical break.

Technical Examples
SETCOM (BREAK) (ENTER)

configures the RS-232-C port to the default values. Specifying BREAK
with no value assigns the default value of 3 as the logical break value.

SETCOM (CTS) ENTER

configures the RS-232-C port to the default values. Because CTS is
specified, the driver looks at the CTS line for a TRUE condition before
it sends a character.

Error Conditions

If you do not install COM/DVR in memory with the SET command
before you issue a SETCOM command, TRSDOS displays a
“COM/DVR not installed" error message.

Sample Use

Suppose you want to log-on to CompuServe. First, you have to SET
=*CL to COM/DVR, and then you have to use SETCOM to set the
parameters of the RS-232-C port so that your computer can
communicate with CompuServe. See the Logging-On to CompuServe
section in the COMM utility description.

1-132

SETKI

Advanced Programmer’s Command
SETKI [(parameters)]

Sets keyboard repeat parameters. If you do not specify a parameter,
the current delay and repeat rate settings are displayed.

You can use SETKI to adjust how your keyboard reacts when you
press a key.

The parameters are:

DEFAULT returns the parameters to their start-up values.

RATE = number sets the repeat rate as number. number is any
number greater than or equal to 1. number equals 2 when
the system is started or reset.

WAIT =number sets the initial delay between the time a key is
first pressed and the first repeat of that key as number.
number is any number greater than or equal to 10. number
equals 22 when the system is started or reset.

QUERY prompts you to enter new values for RATE =number and
WAIT =number.

Examples
SETKI (WAIT=15) (ENTER)

sets the delay rate to 15.
SETK 1 (ENTER)

displays the current delay and repeat rate settings in the format:
Wait= 15, Rate=2

Note: Both the RATE and WAIT parameters use modulo 128. For
example, entering 138 has the same effect as entering 10.

1-133

SPOOL

Command
SPOOL [devspec] [TO] [filespec] (parameters)

establishes a First-In, First-Out buffer for a specified device (usually a
line printer).

You can use SPOOL to print data while you perform other operations
on your computer (such as running a BASIC program).

If you do not specify devspec, it defaults to «PR.
The parameters are:

NO turns off the spooler and resets devspec.

MEM =number specifies number as the amount of memory buffer
(in K) to be used by the spooler. The value of number is
1-32.

BANK = number selects one of three 32K banks of memory to be
used as the spool buffer. number can be a 0, 1, or 2. The
default value of number is 0.

DISK =number specifies number as the amount of disk space (in
K) to be used by the spooler. The value of number cannot
be larger than the amount of available space (in K) on the
disk. For each K of disk space specified, 16 bytes of RAM
are automatically reserved for the spooler’s use.

PAUSE temporarily suspends output to devspec.

RESUME restarts devspec after a PAUSE.

CLEAR clears the spool buffer.

How Data Is Spooled To a Device

All data sent to devspec, such as a printer, is placed in an output
buffer where it waits until the device is again available to accept the
data.

There are two kinds of output buffers: memory and disk. You can set
up a spooler that uses memory or disk or both.

The minimum space allocation for the memory buffer depends on
which BANK you select. If you specify BANK 0, a minimum of 1K
(1024 bytes) is allocated for the memory buffer. If you specify BANK
= 1 or BANK = 2, the entire 32K bank is automatically used for the
memory buffer.

If you specify both buffers, data is sent first to the memory buffer.
When the memory buffer is full, the data is sent to a disk buffer
named filespec, where it waits to be sent to the device. If you specify
a memory buffer only, data is sent to a memory buffer until the device
is ready to accept it.

1-134

When you specify filespec, you may also use the DISK parameter to
specify the amount of disk space to be used by the spooler. TRSDOS
creates a file of the size specified. If you do not specify DISK=,
approximately 5K of disk space is automatically allocated to filespec.

To prevent TRSDOS from allocating any disk space to SPOOL,
specify DISK =0.

filespec remains open as long as SPOOL is on. Do not REMOVE this
file or remove the disk from the drive without closing the file (by
issuing a SPOOL devspec (NO) command).

You cannot issue a SYSGEN library command if the spooler is on.

Once the spooler is turned off, you can turn it on again. The same
memory locations are used, but the following restrictions apply:

® The original parameters are not affected by turning devspec
off and then on.

® Any parameter specified the second time cannot exceed the
memory or disk parameters originally given. If it does, an error
occeurs.

Examples
SPOOL *PR TO TEXTFILE:® (MEM=5,DISK=15) (ENTER

allocates 5K of memory and 15K of disk space in a file named
TEXTFILE/SPL on Drive 0. Since you did not specify an extension to
TEXTFILE, it defaulted to /SPL.

Any output for the printer is buffered and sent to the line printer (»PR)
as fast as the printer can accept the characters. If the 5K memory
buffer is filled, the data is written to the disk file TEXTFILE/SPL on
Drive 0.

SPDOL *PR (BANK=1,DISK=0) (ENTER)

creates a 32K memory buffer for data sent to =PR. Any output for the
printer is sent to the memory buffer and then spooled to *PR when it
is available to accept the data. Since the parameter DISK = is
specified without any size, none of the spooled data is sent to a disk
file.

If the memory buffer is filled, TRSDOS does not process any more
printer data until *PR has printed enough data to bring the number of
characters waiting to be printed below 32K (the size of the memory
buffer).

SPOOL (CLEAR) (ENTER)
clears the information in the spool buffer.
SPOOL *PR (NO) ENTER)

1-135

turns off the spooler and closes the associated disk file. Any filtering,
linking, setting, or routing done to =PR is reset.

You cannot close the disk file by issuing a RESET or REMOVE library
command. SPOOL must be turned off to close the file.

Sample Use

Since most programs produce reports faster than the printer can print
the data, you can use SPOOL to let the programs run at top speed
without having to stop and wait on the printer. That is, while the first
program’s report is still printing, you can begin executing a second
program.

Error Conditions

Some application programs do not honor HIGHS$ and write over a
portion of the SPOOL program. If this happens, the error message
“Cant locate SPOOL in memory” appears. In the future do not use
that application program with SPOOL.

If you issue a SPOOL (OFF) command when SPOOL is already off,
the error message “Spool is not active” appears. If you attempt to
change the parameters of SPOOL after SPOOL is active, the error
message “Spool is already active” appears. You must turn SPOOL off
and turn it back on with the new parameters.

If you load another module into memory after you turn the spooler off,
and you attempt to reload the spooler with different parameters,
TRSDOS issues a “Cannot reinstall with altered paramsters” error
message. You can re-activate the spooler with the original
parameters. If you want to alter the spool parameters, you must reset
the system. If you still need the other module, reload it and reload the
spooler with different parameters.

If you load another program that uses high memory after you load
SPOOL, TRSDOS may not be able to release memory it is using. The
error message “Can't reclaim memory space’ appears. You must
reset the system if you need the space.

If you attempt to use Banks 1 or 2 on a 64K system or if you request
a bank that is already in use, the message “Requested bank in use”
appears.

If there is not enough memory available to set up the routes that the
spooler uses, TRSDOS displays a “No memory space available” error
message. Remove any unused logical devices.

TRSDOS also issues this error message if an application program
sets Bit 0 of CFLAGS$. The application program must reset the bit in
CFLAGS. See the Model 4/4P Technical Reference Manual for
additional information on CFLAGS.

The driver that is connected to the devspec specified in a SPOOL
command must be an output device driver. If you specify an input
device the error message "Device driver incompatible” appears.

1-136

SYSGEN

Advanced Programmer’s Command
SYSGEN [([switch] [,] [DRIVE =drive})}

Creates a configuration file on drive to store information about your
system,

You can use SYSGEN to create a file of current device and driver
configurations that you want TRSDOS to execute each time you
restart the system.

If you do not specify drive, it defaults to Drive 0.
The switch is either YES or NO.

If you specify switch as YES, then your system creates a
configuration file. If you don't specify switch, then YES is assumed.

If you specify switch as NO, then your system removes the
configuration file. However, your system’s current configuration does
not change until you reset your computer.

When you issue a SYSGEN command, all current device and driver
configurations are stored in a file named CONFIG/SYS. The file is
invisible in the directory. You can see it by using the INV parameter in
the CAT and DIR commands.

Each time you reset your computer, TRSDOS loads the CONFIG/SYS
file into memory. While this program is loading, TRSDOS displays the
message " SYSGEN ** in the lower left corner of the display.

If you do not want TRSDOS to load CONFIG/SYS, hold down the
CLEAR) key when you reset the system. See the BOOT command for
additional information on booting your system.

Note: CONFIG/SYS files that were created using previous versions of
TRSDOS, Version 6.0 or 6.1, cannot be used with TRSDOS Version
6.2. You cannot copy a configuration file to a disk. You must use
SYSGEN to create a new CONFIG/SYS file for Version 6.2.

When you start up or reset your computer, it is configured before any
AUTO command executes.

The configuration file CONFIG/SYS contains:

® All active background tasks (such as CLOCK, DEBUG,
TRACE, etc.).

. ® All filtering, linking, routing, and device setting (including
RS-232-C and K settings).

1-137

® All programs that were loaded into high memory above HIGHS.
All memory from HIGHS to the top of memory is written to
CONFIG/SYS. HIGH$ can be set with the MEMORY command
or with the (@ HIGH$ supervisor call. (See the Model 4/4P
Technical Reference Manual.)

® The present state of the VERIFY library command (YES or
NO).

o All Device Control Blocks. (See the Mode! 4/4P Technical
Reference Manual for more information.)

® The present state of the CAPS lock for the keyboard.
Examples
SYSGEN (YES) ENTER

creates a configuration file on Drive § and writes the system
configuration to it.

SYSGEN (NO) (ENTER)
removes the configuration file from Drive 0.
Error Conditions

If you use a SYSGEN command in a JCL file, TRSDOS issues a
"Command invalid during <<DO> processing” error message.

It you specify a value for DRIVE that does not contain a system
diskette, TRSDOS displays a "Warning: Target drive contains no
system” error message.

If you attempt to sysgen while a device is routed to a file, TRSDOS
displays a "Can't while route-to-file is active” error message. You
must remove all routes before you sysgen.

Sample Use

Suppose you want to create a file of commands that automatically
execute each time you startup TRSDOS.

Issue the commands:

TIME (CLOCK=YES) ENTER
SYSTEM (TRACE=YES) (ENTER)
SYSGEN (YES) (ENTER)

to create a CONFIG/SYS file that contains CLOCK and TRACE
information.

1-138

SYSTEM

Advanced Programmer’'s Command
SYSTEM (subcommand|parameters))

Allows you to change the configuration of your TRSDOS system.

You can use the SYSTEM command to customize portions of
TRSDOS to function differently when you boot or reset the system.
When you make these changes, you can store them on the diskette in
Drive 0 with the SYSGEN command. Every time you boot or reset
TRSDOS with that diskette, your changes are in effect rather than the
original TRSDOS values. For example, you can use the BLINK
subcommand to change the cursor from a blinking cursor to a
non-blinking cursor or to another character.

Note: Certain SYSTEM subcommands do not require you to
store the changes on diskette. The changes are stored
automatically as soon as you enter the command. The
subcommands included are: BSTEP, CYL, DATE, HERTZ5,
HERTZ6, RESTORE, and TIME.

You can use the SYSTEM command with subcommands to set or
change the disk drive configuration, load driver routines into high
memory, and turn on or off keyboard, video, and hardware functions.
Some SYSTEM subcommands use portions of high memory. Each of
the subcommands and their parameters are described in more detail
below.

The DEVICE or MEMORY commands display the current configuration
of your TRSDOS system.

If an application program sets Bit 0 of CFLAG$, TRSDOS issues a
*No memory space available” error message when you attempt to
use the SYSTEM subcommands. The application program must reset
the bit in CFLAGS. See the Model 4/4P Technical Reference Manual
for additional information on CFLAGS.

Subcommands

ALIVE displays a changing character in the screen’s upper right
corner.

SYSTEM (ALIVE[= switch])

switch can be YES or NO. if you omit switch, TRSDOS assumes YES
and displays the changing character. NO disables the ALIVE
subcommand.

The changing character indicates that the task processor is running.
The character may continue to move even when the SYSTEM
(TRACE) command stops.

During FORMAT operations and disk I/0, the character stops moving.
Otherwise, if the character is not moving, the system is “hung-up.”

1-139

BLINK changes the cursor character.
SYSTEM (BLINKparameter)
Parameter may be:

=YES returns the cursor to its default character, a blinking ASCII 95
(X'5F).

=NO changes the blinking cursor to a non-blinking cursor.

=number changes the cursor to the ASCH character you specity with
number.

,LARGE changes the cursor to the character ASCII 191.

,SMALL changes the cursor to the character ASCII 160.

If you omit parameter, BLINK changes the cursor to its default
character, a blinking ASCII 95 (X'5F’).

Keep in mind that characters above ASCII 127 change if reverse
video is enabled. Consider your choice of characters carefully.

BREAK enables or disables (BREAK).
SYSTEM (BREAK[= switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES and enables (BREAK). YES enables (BREAK) if it was disabled by
the AUTO*command library command.

Pressing BREAK) has no effect after you execute a (BREAK=NO)
command.

BSTEP establishes the default bootstrap step rate TRSDOS uses
when formatting.

SYSTEM (BSTEP =number)

number can be a number in the range 0-3 indicating the following step
rate:

0 6 milliseconds

1 12 milliseconds
2 20 milliseconds
3 30 milliseconds

The Drive 0 diskette must be write-enabled when changing the
bootstrap step rate. TRSDOS stores the value on logical Drive 0. If
you change the diskette in Drive 0 or change the logical Drive 0 with
the SYSTEM (SYSTEM) command, TRSDOS assumes the bootstrap
rate on the new system disk.

DATE enables or disables the date prompt when you turn on your
computer.

SYSTEM (DATE[= switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES and enables the date prompt. NO disables the date prompt when
you turn on your computer.

1-140

We recommend that you do not disable the date prompt. TRSDOS
uses the date when accessing and creating files, making backups,
and formatting disks.

DRIVE allows you to configure your system’s logical drives.
SYSTEM (parameter|,parameter])
The parameters are:

DRIVE == drive specifies any valid drive number that you are changing
the default values for. If you include DRIVE, use it only one time as
the first parameter in the command line.

You must specify the DRIVE with DRIVER, ENABLE, and DISABLE.

DRIVER = "device driver” specifies the name of the disk driver for the
drive number you specify with the DRIVE parameter.

DISABLE removes access to the drive you specify with the DRIVE
parameter. If you try to access a drive after you have disabled it,
TRSDOS displays an “invalid drive number” error message.

ENABLE allows access to a disabled drive.

If you omit DRIVE with CYL, DELAY, STEP, and WP, TRSDOS sets
these values on all enabled drives.

CYL = number specifies the default number of cylinders for the
FORMAT utility. number can be a value in the range 35 to 96.
TRSDOS writes CYL to the diskette in Drive 0. If you change the
diskette in Drive @, TRSDOS takes the value for CYL from the current
Drive 0 diskette.

DELAY =switch sets the delay time for diskettes. Delay time is the
maximum length of time TRSDOS allows between drive motor-on and
the first attempted access (read or write) of that drive. switch may be
YES or NO. If you specify NO, TRSDOS allows the standard delay
time, .5 seconds. If you specify YES, TRSDOS sets delay time to 1
second.

STEP =number sets the step rate. Step rate is the length of time for
the read-write head to move from one cylinder to another. The step
rate remains in effect until the system is re-booted, turned off or
sysgened. number may be a number in the range 0 to 3 and
represents the following rates in milliseconds:

Number Milliseconds
0 6
1 12
2 20
3 30

1-141

WP = switch sets the Write Protect status. switch may be YES or NO.
If you omit switch, TRSDOS assumes YES. If you specify YES, you
cannot write to the disk, although you can still read from it. If you
specify NO, you can write to and read from the disk (assuming the
disk is not hardware write protected).

FAST sets the system speed at 4 Megahertz (MHz), your computer’s
speed.

SYSTEM (FAST)

Timing loops in TRSDOS Version 1 programs may require you o use
the SLOW subcommand to run the system at the Model !l speed of 2
MHz. These programs may not function properly at 4 MHz. Use the
FAST subcommand to reset the system to 4 MHz after executing a
SLOW subcommand.

GRAPHIC informs TRSDOS that the printer you are using has the
capability of reproducing TRS-80 graphics characters during screen
print.

SYSTEM (GRAPHIC[= switch})

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES, indicating that your printer has the capability to reproduce
graphics characters.

When you press and (), TRSDOS sends a duplicate copy of
the screen to the printer. Normally, TRSDOS prints all characters that
have ASCI! values greater than X'7F' as periods (.). When you
execute a GRAPHICS = YES statement, TRSDOS prints these
characters as their actual graphic characters. You must have a
graphics printer to print these characters.

HERTZ patches your system to run at 50 or 60 Hertz (Hz).
SYSTEM (HERTZnumber)

number can be 5 to specify 50 Hertz, or 6 to specify 60 Hertz.
TRSDOS stores this value on the logical Drive 0. There must not be a
space between HERTZ and number.

Before you use the HERTZ subcommand, see Appendix L for
additional information.

RESTORE enables or disables the restoring of all drives to Track 0 at
startup.

SYSTEM (RESTORE] = switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES and restores all drives,

TRSDOS assumes that the drives are at Cylinder @ when you startup
or reset the system. The RESTORE subcommand causes TRSDOS to
force the hardware to Cylinder @ as well. This decreases initial disk
access time.

1-142

SLOW sets the system speed at 2 Megahertz (MHz), Mode! Il speed.
SYSTEM (SLOW)

Timing loops in TRSDOS Version 1 programs may require you to use
the SLOW subcommand to run the system at the Model i speed of 2
MHz. These programs may not function properly at your computer's
speed of 4 MHz. Use the FAST subcommand to reset the system to 4
MHz after executing a SLOW subcommand.

SMOOTH allows smoother disk access by disabling interrupts eartier.
SYSTEM (SMOOTH[= switch})

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES and activates SMOOTH.

When SMOOTH is active, TRSDOS disables interrupts when reading
data from a floppy disk. This increases disk access speed. However,
the type-ahead function depends on interrupts occurring at regular
intervals. Disabling the interrupts can cause a loss of keystrokes and
RS-232 characters during disk 1/O. When Smooth is active, the time-
of-day clock is not accurate.

SYSRES loads TRSDOS system overlays into high memory.
SYSTEM (SYSRES = number)

number specifies the overlay TRSDOS loads into memory. number
may be 1, 2, 3, 4, 5, 9, 10, 11, or 12. You can only specify one
system overlay per command line.

Every time TRSDOS needs to access a system overlay, TRSDOS
must load that overlay into memory. Loading the overlays into
memory increases processing time because they are immediately
available.

If you load the overlays into high memory, you can remove them from
your system diskette with the PURGE command. This leaves more
room available on your diskette for data and program files.

SYS0, SYS1, SYS2, and SYS3 must be on the booting disk if you
load a configuration file with the SYSGEN command. See the Mode/
4/4P Technical Reference Manual for additional information.

Use the DEVICE command to display which overlays are currently in
memory.

SYSTEM assigns a drive other than Drive 0 as your system drive.
SYSTEM (SYSTEM =drive)

drive may be any valid drive in your system. The drive that you
specify becomes logical Drive 0. The original Drive @ then becomes
the logical drive number specified.

There must be a system disk in drive when you execute a SYSTEM
subcommand. Every time you execute a SYSTEM subcommand, the

1-143

logical drive numbers of Drive @ and drive change. You can repeat
this command as many times as you want. Be sure to remember
which drive is assigned to which logical drive number.

Note: A system disk should contain these files:

SYS0/SYS
SYS1/8YS
SYS2/8YS
SYS3/SYS
SYS4/SYS
SYS10/SYS
SYS12/8YS

and optionally the command libraries:

SYS6/SYS
SYS7/8YS
SYS8/SYS

TIME enables or disables the time prompt when you start up your
system.

SYSTEM (TIME[= switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES and enables the time prompt. NO disables the prompt after you
have executed a TIME = YES command.

If TRSDOS does not prompt you for the time when you startup your
system, the system clocks starts at 00:00:00 each time you start up
the system.

TRACE displays the contents of the program counter (PC}) in the
upper right corner of the video display.

SYSTEM (TRACE[= switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES and displays the program counter. NO turns off the display after
a TRACE =YES command.

The TRACE subcornmand is useful when debugging
assembly-language programs. The value that TRACE displays is the
hexadecimal value of the Z-80 program counter and is constantly
updated by a low priority background task. The program counter
contains the address of the next instruction to be executed. See the
@ADTSK SVC in the Model 4/4P Technical Reference Manual for
additional information.

TYPE enables or disables the keyboard type-ahead feature.
SYSTEM (TYPE[= switch))

switch may be YES or NO. If you omit switch, TRSDOS assumes NO
and disables the type-ahead feature. Use TYPE = YES to re-enable
the feature.

1-144

TAPE100

TAPE100 [file] [(parameters)] Utility
TAPE100 [file1 [TO] file2] [(parameters)]

Lets TRSDOS (1) read a cassette tape file and write it to a disk file, or
(2) read a disk file and write it to a cassette tape.

You can use TAPE100 to read files from cassette tape as well as from
your computer’s disks.

The cassette tape must have been made with the Model 100
computer.

file, file1, and file2 are each either a TRSDOS filespec or a Model 100
filename.

A Model 100 filename is 1 - 6 alphanumeric characters long and it
must begin with a letter. For example, ACCT61, LETTER, and ABFILE
can be Model 100 filenames.

If you do not specity file or file? and file2, you will be prompted to
enter the source and destination filespecs if the operation is a WRITE,
or just the destination filespec if the operation is a READ.

The parameters are:

READ specifies that you want to read a file (file or file7) from
tape and write it to a file (file or file2) on disk. If you specify
READ, you do not have to specify file7. TRSDOS simply
reads the first text file it sees on the tape.

WRITE specifies that you want to read a disk file (file or file?)
and write it to a tape as file or file2.

If you do not specify the READ or WRITE parameter, you will be
prompted for it.

Examples

TRSDOS reads the Mode!l 100 file PRNTER and writes it to the disk
in Drive @ as PRINT/DAT.

TAPE188 ACCTING/TXT:1 (READ) (ENTER

TRSDOS reads the first text file it finds on a Model 100 tape and
writes it to the disk in Drive 1 as ACCTING/TXT.

TAPE1@0@ WEST/DAT:8 TO WESTRN (WRITE) (ENTER)

TRSDOS reads the Drive 0 disk file WEST/DAT and writes it to a file
on a Model 100 tape named WESTRN.

Error Conditions

Any file (disk or tape) must fit in available memory or the error
message “File too large fo fit in avallable memory” appears.

1-145

TIME

Command
TIME [hh:mm:ss] [(parameter)]

You can use TIME to see the current time. You can also use it to
reset the time.

If you specify hh:mm:ss, TRSDOS resets the time. If you do not
specify it, TRSDOS displays the current time.

The parameter is:

CLOCK][= YESINO] turns the clock display on or off. YES is the
default.

hh must be a value in the range 00 to 24, and mm and ss must be a
value in the range 00 to 59. If you specify hh:mm:ss, you must specify
valid numbers for all three values. Specifying values outside these
ranges or not in the proper format results in the error “Bad time
format.”

You may use any of the ASCHl characters in the range 32 (X'20")
through 39 (X'27"), 41 (X’29) through 47 (X'2F’), and 58 (X'3A’), to
separate hours, minutes, and seconds. See Appendix C for a
complete list of ASCIl character codes.

The real time clock turns off while TRSDOS does some of its disk /0
functions, such as BACKUP and FORMAT, so do not depend on the
clock for constantly accurate time and date information.

You can enable and disable the prompt for time on power-up or reset
with the SYSTEM (TIME =) command.

Examples
Time (ENTER)

displays the real time of the system. The clock is reset to §0:00:00
every time you power up.

TIME (CLOCK=YES) (ENTER

displays the real time clock in the upper right corner of the screen.
Note: CLOCK will print over whatever TRSDOS attempts to print at
the location occupied by the clock display.

sets the clock to 12:29:34 p.m. The latest acceptable time is 23:59:59,
as the clock runs in the 24-hour mode. When the clock reaches
23:59:59, the date is automatically updated.

The time lag between pressing and the time set on the clock
is approximately 2 seconds. So, when setting the clock with the
correct time, remember to adjust for the 2-second time lag.

1-146

TOF

Command
TOF

Sends a top-of-form character (X'6C’) to the printer.

TOF causes the printer to advance to the top of the next page before
printing. You can use TOF with any printer.

If your printer cannot interpret a top-of-form character, you must use
the FORMS filter with FFHARD off {the default setting) to use this
command. All Tandy DMP series printers can interpret

top-of-form characters.

See FORMS for additional information on FFHARD.
Example
TOF (ENTER

sends a top-of-form character to the printer causing the printer to
advance to the top of the next page.

1-147

VERIFY

Command
VERIFY [(switch)]

Controls the verify function.

You can use VERIFY to assure you that data was properly written to a
disk.

When VERIFY is on, TRSDOS reads the data it writes to the disk to
verify that the data is readable.

The switch is either ON or OFF.

A TRSDOS floppy disk system starts up with VERIFY off. A hard disk
system starts up with VERIFY on.

Although having the VERIFY switch turned on provides a reliability
check during disk |/O, it also increases overall processing time when
you write to a disk file. You must determine if the increase in reliability
warrants the increase in processing time.

All disk writes are automatically verified during any BACKUP utility
function, whether or not the VERIFY switch is on.

The state of the VERIFY command can be saved in the configuration
file with the SYSGEN library command. (You can check the present
status of VERIFY using the DEVICE command.)

Examples
VERIFY (ON) (ENTER
turns on the verify function.
VERIFY (OFF) (ENTER)
turns off the verify function.
VERIFY ENTER)
turns on the verify function.
Sample Use

Suppose you are writing a tax file named TAX/TXT to disk and it is
extremely important that the information in the file be correct.

Using VERIFY causes TRSDOS to produce an informative message
when data written to TAX/TXT is written incorrectly. An informative
message could indicate that the disk needs to be replaced or the
drives need to be cleaned.

1-148

NOTES:

NOTES:

Part II/ Model 4 BASIC

Introduction

This part of the manual is about the BASIC language. Model 4 BASIC
is an "interpreter.” When you run a program, it executes each
statement one at a time. This makes it quick and easy to use. It also
allows you to take advantage of many of TRSDOS Version 6's
features, such as:

e Faster running programs
e Better graphics capabilities

e More print positions on the screen

About Part 11

Part |l of this manual, like Part i, is for reference. It is not a tutorial.
We assume you already know BASIC.

Section 1l — Operations. This section shows how to load BASIC.
It also demonstrates how to write, run and save a BASIC
program on disk.

Section IV — The BASIC Language. This section includes a
definition for each of BASIC’s keywords (statements and
functions) in alphabetical order. In addition, it shows how to write
a program to store data on disk.

if you have read Getting Started with TRS-80 BASIC (sold separately),
you need to know the differences between Mode! Hi BASIC and Model
4 BASIC. Appendix E shows these differences. These differences will
often prevent a BASIC program written for TRSDOS Version 1 (the
Mode! ii's operating system) from running under TRSDOS Version 6
(your computer’s operating system), uniess the program is modified.
You also need to know how to use “disk files.” This is explained in
Chapter 5.

NOTE: From now on, "BASIC" (used alone) refers to Model 4 BASIC.

Notations

CAPITALS material that must be entered exactly as it
appears.

italics words, letters, characters or values you must
supply from a set of acceptable entries.

... (ellipsis) items preceding the ellipsis may be repeated.

X'nnnn' nnnn is a hexadecimal number.

O'nnnnn’ nnnnn is an octal number.

(KEYNAWE) one of the keys from your keyboard.

2-3

Terms
buffer

[parameters]

[expressions}

syntax

a blank space character (ASCI! code 32). For
example, in

BASICBBPROG
there are two spaces between BASIC and PROG.

a number between 1 and 15. This refers to an
area in memory that BASIC uses to create and
access a disk file. Once you use a buffer to create
a file, you cannot use it to create or access any
other files; you must first close the file. You may
only access an open file with the buffer used to
open it.

information you supply to specify how a command
is to operate. Parameters enclosed in brackets are
optional.

values you supply for a function to evaluate.
Expressions enclosed in brackets are optional.

a command with its parameter(s), or a function
with its argument(s). This shows the format to use
for entering a keyword in a program line.

Terms Used in Chapter 7 for Brevity:

line

integer

string

number

dummy number
or dummy string

a numeric value that identifies a BASIC program
line. Each line has a number between 0 and
65529.

any integer expression. It may consist of an
integer, or several integers joined by operators.
Integers are whole numbers between —-32768 and
32767.

any string expression. It may consist of a string, or
several strings joined by operators. A string is a
sequence of characters which is to be taken
verbatim.

any numeric expression. It may consist of a
number, or several numbers joined by operators.

a number (or string) used as a parameter to meet
syntactic requirements, but whose value is
insignificant.

Part II is organized this way:
Section lll. Operations
Chapter 1. Sample Session

Chapter 2. Command Mode
Execution Mode

Chapter 3. Line Edit Mode
Section IV. The BASIC Language
Chapter 4. BASIC Concepts
Chapter 5. Disk Files
Chapter 6. Introduction to BASIC Statements and Functions
Chapter 7. BASIC Statements and Functions

2-5

Section III/ Operations

Chapter 1/ Sample Session

Loading BASIC

The easiest way to learn how BASIC operates is to write and run a
program. This chapter provides sample statements and instructions to
help familiarize you with the way BASIC works.

The main steps in running a program are:

A) Loading BASIC

B) Typing the program

) Editing the program

) Running the program

) Saving the program on disk

) Loading the program back into memory

Mmoo

After you power up your system and install the diskette, the TRSDOS
Version 6 start-up logo is displayed. Then, the following prompt
appears: Date?

To answer this prompt, type today’s date in this format: dd/mm/yy;
then press (ENTER). For example, for December 1, 1984, type:

12/81/84 ENTER)

The computer converts these numbers to: Sat, Dec 1, 1984 and
displays the message “TRSDOS Ready”. This indicates that you are
at the operating system level. To load BASIC into the system, type:

BASIC (ENTER

A paragraph with copyright information appears on your screen,
followed by: Heady

You may now begin using BASIC.

Options for Loading BASIC

When loading BASIC, you can also specify a set of options. They are:
BASIC [program] ([F = number of files}[,M = highest memory location})

Program specifies a program to run immediately after BASIC is
started.

F = specifies the maximum number of data files that may be open at
any one time (from 0-15). If you omit this option, the number of files
defaults to three. Each file you specify uses 564 bytes of memory.

M= specifies the highest memory location for BASIC to use. Omit this
option unless you are going to call assembly-language subroutines.
(In that case, you may want to set the amount of memory well below
the high-memory modules of TRSDOS.) If you omit this option, the
system allocates all memory up to the HIGH$ marker to BASIC.
HIGH$ can be adjusted through the MEMORY library command. See
the BASIC Memory Map in Appendix J for more details.

2-9

Examples

TRSDOS Resdy

BASIC PAYROLL (F=5)
initializes BASIC, then loads and runs the program PAYROLL; allows
five data files to be open; uses all memory available.

TRSDOS Ready

BASIC (M=450856) (ENTER

initializes BASIC; allows three data files to be open; sets the highest
memory iocation to be used by BASIC at 45056.

TRSDOS Ready

BASIC (M=63488,F=6) ENTER)
initializes BASIC; sets the highest memory location at 63488; allows
six data files to be open. Notice that the sequence in which the M=
and F = options are specified is irrelevant.

TR5D0S Ready

BASIC (ENTER)

initializes BASIC; allows three data files to be open; uses all memory
available.

Typing the Program

Let's write a small BASIC program. Before pressing ENTER) after each
line, check the spelling. if you have made any mistakes, use
(BACKSPACE or to correct them.

19 A$="WILLIAM SHAKESPEARE WROTE * (ENTER
15 B$="THE MERCHANT OF VENICE"
20 PRINT A$; B$ (ENTER

Check your speiling again. If it is still not perfect, enter the fine
number where you made the mistake. Then type the entire line again.

For example, suppose you had typed:

15 B$='"THE VERCHANT OF VENICE"
To correct line 15, re-type it:

15 B$="THE MERCHANT OF VENICE" (ENTER
Then type:

RUN (ENTER)

2-10

Your screen should display:

WILLIAM SHAKESPEARE WROTE THE MERCHANT OF
VENICE
BASIC replaced line 15 in the original program with the most recent
line 15.

NOTE: BASIC "reads"” your program lines in numerical order. It
doesn't matter if you entered line 15 after line 20; it will still read and
execute 15 before "looking™ at 20.

BASIC has a powerful set of commands which allow you to correct
mistakes without having to re-type the entire line. These commands
are discussed in Chapter 3, the "Line Edit Mode.”

Saving the Program on Disk

You can save any of your BASIC programs on disk. The disk must be
write-enabled and formatted. To do this, you assign it a "filespec™.

For example, if you wanted to save the program we just wrote, you
could assign it the filespec "AUTHOR". Type the following command:

SAVE "AUTHOR'" (ENTER

It takes a few seconds for the computer to find a place on disk to
store our program. When this process is completed, it displays Ready.
The program is now saved on disk.

NOTE: A filespec can have a maximum of eight alphanumeric
characters. It can also have an optional extension, up to three
characters long. A slash / must be included between the filespec and
the extension. The first character of both the filespec and the
extension must be a letter. See Section |, "Disk Files” for additional
information.

Example
SAVE "AUTHOR/WIL"™ (ENTER

You may also add a drive number to your filespec by typing a colon :
and the drive number.

Example
SAVE "AUTHOR:1" (ENTER

tells the computer to save "AUTHOR” on the disk in Drive 1.
Otherwise, the computer assumes you to save it on the first available

drive. If you do specify a disk drive, make sure you have a disk in that
drive.

Loading the Program

If, after writing or running other programs, you wanted to go back and
use this program again, you must “load” it back into memory. To do
this, type: LOAD “filespec”, R

Example
LOAD "AUTHOR™, R (ENTER

tells the computer to load the program "AUTHOR” from disk into
memory; option R tells the computer to run it.

Another way to load and run a program is to type: RUN “filespec”.
RUN automatically loads and runs the program specified by “filespec”.

The SAVE, LOAD and RUN commands are discussed in more detail
in Chapter 7.

2-12

Chapter 2/
Command And Execution Modes

This chapter describes BASIC’s command and execution modes. The
command mode is for typing in program lines and immediate lines.
The execution mode is for executing programs and immediate lines.

Command Mode
Whenever you enter the command mode, BASIC displays the prompt:
Ready

in the command mode, BASIC does not “read” your input until you
complete a “logical line” by pressing ENIER. This is called “line
input”, as opposed to “character input”.

A logical line is a string of up to 255 characters and is aiways
terminated by pressing ENTER). Of these 255 characters, 249 are
reserved for the line itself; the other six are reserved for the line
number and the space foliowing the line number.

A physical line, on the other hand, is one line on the dispiay. it
contains a maximum of 80 characters.

two physical lines, but only one logical line.

Interpretation of a Line

BASIC aiways ignores leading spaces in the line — it jumps ahead to
the first non-space character. if this character is not a digit, BASIC
treats the line as an immediate line. If it is a digit, BASIC treats the
line as a program line.

For example, if you type:

PRINT "THE TIME IS" TIMES$
BASIC takes this as an immediate iine.
But if you type:

180 PRINT "THE TIME IS" TIMES$
BASIC takes this as a program line.

Immediate Lines

An immediate iine consists of one or more statements separated by
colons. The iine is executed as soon as you press (ENTER). For
example:

Ready
CLS: PRINT "THE SQUARE ROOT OF 2 IS'"; SQR(2)

is an immediate iine. When you press (ENTER), BASIC executes it.

2-13

Program Lines

A program line consists of a line number in the range 0 to 65529,
followed by one or more staiements separated by colons. When you
press (ENTER), the line is stored in memory, along with any other lines
you have entered this way. The program is not executed until you
type RUN or another execute command. For example:

180 CLS: PRINT "THE SQUARE ROOT OF 2 IS8" SQRC2)

is a program line. When you press (ENTER), BASIC stores it in
memory. To execute it, type:

RUN (ENTER)

NOTE: If you include numeric constants in a line, BASIC evaluates
them as soon as you press ENTER); it does hot wait until you RUN the
program. If any numbers are out of range for their type, BASIC returns
an error message immediately after pressing (ENTER).

Special Keys in the Command Mode

(BACKSPACE) Backspaces the cursor, erasing the preceding

or character in the line. Use this to correct typing

or €TRD(HD errors before pressing (ENTER).

SPACEBAR) Enters a space character and advances the
cursor.

BREAK) Interrupts line entry and starts over with a new
line.

(€3] Line feed — starts a new physical line without

or CTRDCD ending the current logical line.

(CAPS Switches the keys pressed to either all uppercase
or uppercase/lowercase mode.

(ENTER) Ends the current logical line. BASIC "takes” the
line.

(SHIFT) (BACKSPACE)

or (SHIFD Deletes the current fine.

Execution Mode

When BASIC is executing statements (immediate lines or programs),
it is in the execution mode. In this mode, the contents of the video
display are under program control.

Special Keys in the Execution Mode

SHIFD(@) Pauses execution. Press any other key (except
(BREAK)) to continue.

2-14

BREAK

ENTER)

(BACKSPACE),

=3, CTRDAD,
(SHIFT)(BACKSPACE),
SHIFD=), CAED

Terminates execution and returns you to command
mode.

Interprets data entered from the keyboard as a
response to the INPUT statement.

These keys or key combinations have special
meaning in Execution Mode when responding to
INPUT and LINE INPUT statements. See the
description of keys in the section “Special Keys in
the Command Mode.”

Chapter 3/ Line Edit Mode

This mode enables you to “debug” (correct) programs quickly and
efficiently. It allows you to correct a program line without having to
re-type the entire line.

If your computer encounters a syntax error while executing a program,
it automatically puts you in the "line edit mode.” The display shows:

Syntax error in line
Ready

line

(line is the program line in which the error occurred.) In this case, you
are ready to use the edit mode commands and subcommands
described later in this chapter.

However, if you wish to activate the line editor yourself (because you
have noticed a mistake or wish to make a change in a long program
line), type:

EDIT 1ine (ENTER

This lets you edit the specified line number. (If the line number you
specify has not been used, an “Undefined line number” error occurs.
If you do not have a space after the word EDIT, a “Syntax error”
occurs.)

You may also type:
EDIT . (ENTER

The period after EDIT means that you want to edit the current
program line, the last line entered, the last line altered, or a line in
which an error has occurred. Notice that you need to type a blank
before the period; otherwise, BASIC gives you a “Syntax error”
message.

For example, type the following line and press (ENTER. (To type the
exponent sign ~, press CLEAR(D).

126 FOR I = 1 TD 18 STEP .5: PRINT 1, I*2, 1°3:
NEXT

This line will be used in exercising all the edit subcommands
described below.

Now type EDIT 100 and press (ENTER. The computer displays:
180

This starts the editor. You may now begin editing line 100.

217

Special Keys in the Edit Mode

ENTER)

Pressing (ENTER) in the edit mode records all the changes you made
in the current line and returns you to the command mode.

SPAGEBAR

Pressing moves the cursor over one space to the right
and displays any character stored in the preceding position. For
example, using Line 100 entered above, put the computer in the edit
mode so the display shows:

tee

Now press (SPACEBAR). The cursor moves over one space and the

first character of the program line is displayed. If this character was a
blank, then a blank is displayed. Press (SPACEBAR) again until you
reach the first non-blank character:

e F

is displayed. To move over more than one space at a time, type the
desired number of spaces first, then press (SPACEBAR). For example,

this (depending on how many blanks you inserted in the line):
148 FOR | =

Now type 8 and press SPACEBAR). The cursor moves over eight

spaces to the right, and eight more characters are displayed.
103 FOR I o= 1 TOD 19

L (List Line)

displays the remainder of the program line (unless the computer is
under one of the insert subcommands listed below). The cursor drops
down to the next line of the display, reprints the current line number,
and moves to the first column of the line.

For example, when the display shows

100
press L (without pressing (ENTER). Line 100 is displayed:
100 FOR 1 = 1 TO 18 STEP .S: PRINT I, 1”2, [°3:

NEXT 108

This lets you look at the line in its current form while you're doing the
editing.

2-18

Insert Subcommand Mode

The insert subcommand mode allows you to add material to a line
while editing it. The three keys you can use to enter this subcommand
mode are X, | and H.

X (Extend Line)

Displays the rest of the current line. Typing (XJ also moves the cursor
to the end of the line and puts the computer in the insert
subcommand mode. This enables you to add material to the end of
the line.

For example, using Line 100, when the display shows
198

press (XD (without pressing (ENTER) and the entire line is displayed,;
notice that the cursor now follows the last character on the line:

188 FOR I = 1 70O 1€ STERP .5: PRINT I, Im2, [73:
NEXT

We can now add another statement to the line, or delete material from
the line by using BACKSPACE) or ==). For example, type

: PRINT "DONE®
(ENTER)

at the end of the line. If you typed:
LIST 100
the display should show something like this:

1@ FOR I = % TO 1¢ STEP .5: PRINT I, I®g, 173:
NEXT: PRINT "DONE®

NOTE: If you want to continue editing the line, press GHIFD(E) to get
out of the insert subcommand mode.

I (Insert)

Inserts material beginning at the current cursor position on the line.
For example, type

EDIT 100
(ENTER

then use (SPACEBAR) to move over to the decimal point in line 100.
The display shows:

108 FOR T = 1 TO 18 STEP |

Suppose you want to change the increment from 5 to .25. Press the
(D key (don't press (ENTER). The computer lets you insert material at

the current position. Type 2 now, and the display shows:
198 FOR 1 = % T 19 STEP .2

You have made the necessary change, so press SHIFD(T) to escape
from the insert subcommand. Now press (L) to display the remainder
of the line and move the cursor back to the beginning of the line:

14¢ FOR T = 1 TD 18
NEXT: PRINT “DON

TEP .2%: PRINT 1, 172, 1°3:
100

NOTE: You can also exit the insert subcommand and save all

changes by pressing (ENTER). This returns you to command mode.

H (Hack and Insert)

Deletes the remainder of a line and lets you insert material at the
current cursor position.

For example, using line 100, enter the edit mode and space over until
just before the PRINT "DONE” statement. Suppose you wanted to
delete this statement and insert an END statement. The display
shows:

109 FOR 1 = 1 TO 18 STEP .25: PRINT [, 172, I°3:
NEXT
Press (1), then type END and press (ENTER). List the line:
108 FOR [= 1 TO 18 STEP .25: PRINT I, 1%2, 173
NEXT: END

should be displayed.

NOTE: To continue editing the line, press SHIFD(L) to get out of the
insert subcommand mode.

Other Edit Commands
A (Cancel and Restart)

Moves the cursor back to the beginning of the program line and
cancels editing changes made since the last time you pressed
(ENTER).

For example, if you have added, deleted, or changed something in a
line, and you wish to go back to the beginning of the line and cancel
the changes already made: first press GHIFD(E) (to escape from any
subcommand you may be executing); then press (A). The cursor
drops down to the next line, displays the line number and moves to
the first character position.

E (Save Changes and Exit)

Ends editing and saves all changes made. You must be in edit mode,
not executing any subcommand, when you press (£ to end editing.

2-20

Q (Cancel and Exit)

Ends editing and cancels all changes made in the current editing
session. If you've decided not to change the line, type (@ to cancel
changes and leave the edit mode.

If a syntax error is detected during program execution, BASIC starts
the editor. To examine variable values, you must press Q before
typing any other command.

nD (Delete)

Deletes the specified number of characters to the right of the cursor.
The deleted characters appear enclosed in backslashes.

For example, using line 100, space over to just before the PRINT
statement:

188 FOR [= 1 TO 18 STEP .25:

Now type 19D. This tells the computer to delete 19 characters to the
right of the cursor. The display should show something like this:

189 FOR I = 1 TO 18 STEP .25: \PRINT I, I"2
173N

»

When you list the complete line, you will see that everything from the
PRINT to the next statement has been deleted.

nC (Change)

Lets you change the specified number of characters beginning at the
current cursor position. If you type C without a preceding number, the
computer assumes you want to change one character. When you
have entered n number of characters, the computer returns you to the
edit mode {(so you're not in the nC subcommand).

For example, using line 100, suppose you want to change the final
value of the FOR NEXT loop, from “10” to 15", In the edit mode,
space over 1o just before the “0” in “10".

198 FOR I = 1 TD 1

Now press (€). The computer assumes you want to change just one
character. Press (8), then press (L). When you list the line, you will
see that the change has been made.

108 FOR T = 1 70 15 STEP .25: MEXT: END

would be the current line if you've followed the editing sequence in
this chapter.

2-21

nSc (Search)

Searches for the nth occurrence of the character ¢, and moves the
cursor to that position. If you don’t specify a value for n, the computer
searches for the first occurrence of the specified character. If
character ¢ is not found, cursor goes to the end of the line.

NOTE: The computer only searches through characters to the right of
the cursor.

For example, using the current form of line 100 type EDIT 100
ENTER), then press (2)(83(3). This tells the computer to search for
the second occurrence of the colon character. The display should
show:

198 FOR T = 1 70O 15 STEP .25: NEXT

You may now execute one of the subcommands beginning at the
current cursor position. For example, suppose you want to add the
counter variable after the NEXT statement. Type | to enter the insert
subcommand, then type the variable name, |. That's all you want to
insert, so press GHIFD(I) to escape from the insert subcommand
mode. The next time you list the line, it should appear as:

1ee FOR T = 1 TO 18 STEP . 2h: NEXT I: END

nKc (Search and "Kill”)

Deletes all characters up to the nth occurrence of character ¢, and
moves the cursor to that position.

For example, using the current version of line 100, suppose we
wanted to delete the entire line up to the END statement. Type EDIT
100 ENTER), then type (2)(XD(2). This tells the computer to delete all
characters up to the 2nd occurrence of the colon.

196 \FOR 1 = 1 TO 15 STEP .25: HEXT I\
should be displayed. The second colon still needs to be deleted, so
type D. The display now shows:

TRE ONFOR 1 o= 1 TO 15 STEP .25: NEXT I\\V:\

Line 100 should look something like this:
128 END

n(BACKSPACE
orn

Moves the cursor to the left by n spaces. If no number n is given, the
cursor moves back one space. When the cursor backspaces, all
characters in its path are erased from the display, but they are not
deleted fromthe program. Use the space bar to advance the cursor
forward and re-display the erased characters.

Section IV/ The BASIC Language

Chapter 4/ BASIC Concepts

This chapter explains how to use the full power of BASIC. This
information can help programmers build powerful and efficient
programs. If you are still something of a novice, you might want to
skip this chapter for now, keeping in mind that the information is here
when you need it.

The chapter is divided into four sections:

A. Overview — Elements of a Program. This section
defines many of the terms we will be using in the chapter.

B. How BASIC Handles Data. Here we discuss how BASIC
classifies and stores data. This shows you how to get BASIC to store
your data in its most efficient format.

C. How BASIC Manipulates Data. This gives you an
overview of all the different operators and functions you can use to
manipulate and test your data.

D. How to Construct an Expression. This topic can help
you in constructing powerful statements instead of using many short
ones.

A- Overview: Elements of a Program
This overview defines the elements of a program.

A program is made up of “statements”; statements may have several
“expressions.”

We will refer to these terms during the rest of this chapter.

Program

A program is made up of one or more numbered lines. Each line
contains one or more BASIC statements. BASIC allows line numbers
from 0 to 65529 inclusive. You can type a maximum of 249 characters
per line. BASIC reserves six other characters for the line number and
for the space following the line number. You may also have two or
more statements to a line, separated by colons.

Here is a sample program:

2-25

Line BASIC Colon between _BASIC statement

number ‘stai‘ysmen‘ly
N

188 CLS:"PRINT *"NORMAL MODE..."

118 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

1286 FOR I = 1 T0 12@88@: NEXT I

136 CLS: PRINT CHR$(23); "DOUBLE-SIZE MODE..."
148 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

156 END

When BASIC executes a program, it handles the statements one at a
time, starting with the first and proceeding to the fast. Some
statements, such as GOTO, ON . .. GOTO, GOSUB, change this
sequence.

Statements

A statement is a complex instruction to BASIC, telling the computer to
perform specific operations. For example:

GOTC 1090

telis the computer to perform the operations of (1) locating line 100,
(2) transferring control to that line and (3) executing the statement(s)
on that line.

END

tells the computer to perform the operation of ending execution of the
program.

Many statements instruct the computer to perform operations with
data. For example, in the statement:

PRINT"SEPTEMBER REPORT™

the data is SEPTEMBER REPORT. The statement instructs the
computer to print the data inside quotes.

Expressions

An expression is actually a general term for data. There are four types
of expressions:

1. Numeric expressions, which are composed of numeric data.
Examples:

(1 + 5.2)/3

D

5*B

3.7682

ABS(X) + RND(@)
SINC3 + E)

2-26

2. String expressions, which are composed of character data.
Examples:

As

"STRING”

"STRING"™ + “DATA"

MO$ + “DATA"

MID$C(A$,2,5) + MIDSC"MAN",1,2)
M$ + A$ + BS

3. Relational expressions, which test the relationship between two
expressions.

Examples:

A=1
A$>BS

4. Logical expressions, which test the logical relationship between
two expressions.

Examples:

A$="YES"™ AND B$="NO"
C>5 0OR M<B OR 2>-2
578 AND 452

Functions

Functions are automatic subroutines. Most BASIC functions perform
computations on data. Some serve a special purpose, such as
controlling the video display or providing data on the status of the
computer. You may use functions in the same manner that you use
any data: as part of a statement.

These are some of BASIC's functions:

INT
ABS
STRINGS

For example, ABS returns the absolute value of a numeric expression.
The following example shows how this function works:

PRINT ABS(7x(-5)) (ENTER
35
READY

B- How BASIC Handles Data

BASIC offers several different methods of handling your data. Using
these methods properly can greatly improve the efficiency of your
program. In this section we discuss:

2-27

Ways of Representing Data
Constants
Variables
How BASIC Stores Data
Numeric (integer, single precision, double precision)
String
How BASIC Classifies Constants
How BASIC Classifies Variables
How BASIC Converts Data

Ways of Representing Data

BASIC recognizes data in two forms: directly (as constants), or by
reference to a memory location (as variables).

Constants

All data is input into a program as “constants” — values which are
not subject to change. For example, the statement:

PRINT "1 PLUS 1 EQUALS"; 2

contains one string constant (1 PLUS 1 EQUALS), and one numeric
constant (2).

In these examples, the constants “input” to the PRINT statement.
They tell PRINT what data to print on the display.

These are more examples of constants:

3.14159 "L.O.SMITH"
1.775E+3 "$123456789ABCDEF"
"NAME TITLE" —123.45E~-8
57 "AGE"

Variables

A variable is a place in memory where data is stored. Unlike a
constant, a variable's value can change. This allows you to write
programs dealing with changing quantities. For example, in the
statement:

A$ = "“OCCUPATION"

The variable A$ now contains the data OCCUPATION. However, if
this statement appeared later in the program:

A$ = "FINANCE"

The variable A$ would no longer contain OCCUPATION. It would now
contain the data FINANCE.

Variables can also store numeric values. For example:
A = 134

2-28

Variable Names

In BASIC, variables are represented by names. Variable names must
begin with a letter, A through Z. This letter may be followed by one or
more characters (digits or letters).

For example:
AM A Al BALANCE EMPLOYEE2
are all valid and distinct variable names.
Variable names may be up to 40 characters long. All characters are
significant in BASIC.

Reserved Words

Certain combinations of Jetters are reserved as BASIC keywords and
operator names. These combinations cannot be used as variable
names. For example:

OR LEN OPTION

cannot be used as variable names. However, they may be embedded
in a variable name. For example, OPTIONS is a valid variable name.

BASIC requires that all reserved words be delimited. This means that
you must leave a blank space between a reserved word and any
variables, constants or other reserved words. See Appendix F for a
list of BASIC's reserved words.

Simple and Subscripted Variables

Variables may also be “subscripted” so that an entire list of data can
be stored under one variable name. This method of data storage is
called an array. For example, an array named A may contain these
elements (subscripted variables):

A(0) A(1) A() A(3) A4)

You may use each of these elements to store a separate data item,
such as:

A(®) = 5.3
A(l) = 7.2
A(2) = 83
A(3) = 6.8
A4) = 3.7

In this example, array A is a one-dimensional array, since each
element contains only one subscript. An array may also be
two-dimensional, with each element containing two subscripts. For
example, a two-dimensional array named X could contain these
elements:

2-29

X{(0,0) = 8.6 X{0,1) = 3.5
X(1,0) = 7.3 X(1,1) = 326
With BASIC, you may have as many dimensions in your array as your

program space allows. Here is an example of a three-dimensional
array named L which contains these eight elements:

L(0,0,0) = 35233 L(0,1,0) = 96522

L{0.0.1) = 52000 L(0,1,1) = 10255
L(1,0,0) = 33333 L(1,1,0) = 96253
L{1,0,1) = 53853 L(1,1,1) = 79654

BASIC assumes that all arrays contain 11 elements in each
dimension. If you want more elements you must use the DIM
statement at the beginning of your program to dimension the array.

For example, to dimension array L, put this line at the beginning of
the program:

DIM LC1,1,1)

to allow room for two elements in the first dimension two in the
second, and two in the third for a total of 2 = 2 = 2 = 8 elements.

How BASIC Stiores Data

The way BASIC stores data determines the amount of memory it
consumes and the speed in which BASIC can process it.

Numeric Data

You may get BASIC to store all numbers in your program as either
integer, single precision, or double precision. In deciding how to get
BASIC to store your numeric data, remember the trade-offs. Integers
are the most efficient and the least precise. Double precision is the
most precise and least efficient.

Integers
(Fastest in Computations, Limited in Range)

To be stored as an integer, a number must be whole and in the range
of —32768 to 32767. An integer value requires two bytes of memory
for storage. Arithmetic operations are faster when both operands are
integers.

For example:
1 3200 -2 500 ~12345
can all be stored as integers.

2-30

Single Precision
(General Purpose, Full Numeric Range)

Single-precision numbers can include up to seven significant digits,
and can represent normalized values with exponents up to 38, i.e.,
numbers in the range:

[~1 x 10%, —1 x 10-%][1 x 10%, 1 x 10 -]

NOTE: In this manual, a normalized value is one in which exactly one
digit appears to the left of the decimal point. For example, 12.3
expressed in normalized form is 1.23 x 10.

If a number is raised to a power greater than 38, an “Overflow” error
occurs. If it is raised to a power lower than - 38, no errors are
generated and program execution continues.

A single-precision value requires four bytes of memory for storage.
BASIC assumes a number is single precision if you do not specify the
level of precision.

For example:
10.001 -~ 200034 1.774E6 6.024E - 23 123.4567

can all be stored as single-precision values. But even though BASIC
stores a number with up to seven digits of precision, when printing it,
only six digits are shown.

NOTE: When used in a decimal number, the symbol E stands for
“single-precision times 10 to the power of . . .” Therefore 6.024E - 23
represents the single-precision value:

6.024 x 10-*

Double Precision
(Maximum Precision, Slowest in Computations)

Double-precision numbers can include up to 16 significant digits, and
can represent values in the same range as that for single-precision
numbers. A double-precision value requires eight bytes of memory for
storage. Arithmetic operations involving at least one double-precision
number are stower than the same operations when all operands are
single precision or integer.

For example:

1010234578

- 8.7777651010
3.141592653589793
8.00100708D12

can all be stored as double-precision values.

NOTE: When used in a decimal number, the symbol D stands for
“double precision times 10 to the power of . . .” Therefore

2-31

8.00100708D12 represents the value
8.00100708 x 10

Strings

Strings (sequences of characters) are useful for storing non-numeric
information such as names, addresses, or text. You may store ASCI|
characters, as well as any of the graphic and non-ASCii symbols, in a
string. (A list of Character Codes is included in Appendix C).

For example, the data constant:
Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and blank)
in the string is stored as an ASCII code, requiring one byte of storage.

BASIC would store the above string constant internally as:

I i | | i 7]
Hex |4A 61, 63|68 20 42 72|6F 77 |6E 2C |20 41|67 65|20 33 38
Code i | B P |
AsClHl | | B [[
Char-| J lalclk i!‘rﬁu!wn , [A Fgll o [3 B8N
acter | | | B | b | |54 i |

A string can be up to 255 characters long. Strings with length zero are
called “null” or “empty".

How BASIC Classifies Constants

When BASIC encounters a data constant in a statement, it must
determine the type of the constant: string, integer, single precision, or
double precision. First, we will list the rules BASIC uses to classify the
constant. Then we will show you how you can override these rules, if
you want a constant stored differently:

Rule 1
If the value is enclosed in double-quotes, it is a string.
For example:

“YES”
“3331 Waverly Way”
1234567890"

are all classified as strings.
Rule 2

If the value is not in quotes, it is a number. {An exception to this rule
is during data entry by an operator, and in DATA lists. See INPUT,
INKEYS$, and DATA.)

2-32

For example:

123001
9
-7.3214E + 6

are all numeric data.

Rule 3

Whole numbers in the range of — 32768 to 32767 are integers.
For example:

12350
-12
10012

are integer constants.

Note: In a program statement, you enter a number as a constant in
response to a command that calls for an integer, and if the number is
out of integer range, BASIC converts the number to single or double
precision. When the number is printed, it appears with a type-
declaration tag at the end (# for double precision, ! for single
precision).

Rule 4

if the number is not an integer and contains seven or fewer digits, it is
single precision.

For example:

1234567
-1.23
1.3321

are all classified as single precision.
Rule §

If the number contains more than seven digits, it is double precision.
For example, these numbers:

1234567890123456
—1000000000000.1
2.777000321

are all classified as double precision.

Type Declaration Tags

You can override BASIC's normal typing criteria by adding the
following “tags” at the end of the numeric constant:

! Makes the number single precision. For example, in the
statement:

2-33

A = 12.345678981234!

BASIC classifies the constant as single precision, and shortens it to
seven digits. However, if you tell BASIC to print the value of A, only
six digits are printed out:

12.3457
E Single-precision exponential format. The E indicates that the

constant is to be multiplied by a specific power of 10. For
example:

A = 1.2E5
stores the single-precision number 120000 in A.
Makes the number double precision. For example, in statement:
PRINT 3#/7

BASIC classifies the first constant as double precision before the
division takes place.

D Double-precision exponential format. The D indicates the
constant is to be multiplied by a specified power of 10. For
example, in:

A = 1.23456789D - 1
the double-precision constant has the value 0.123456789.

How BASIC Classifies Variables

When BASIC encounters a variable name in the program, it classifies
it as either a string, an integer, a single-precision number, or a
double-precision number.

BASIC classifies all variable names as single-precision initially. For
example:

AB AMOUNT XY L
are all single precision initially. If this is the first line of your program:
LP = 1.2

BASIC classifies LP as a single-precision variable.

However, you may assign different attributes to variables by using
definition statements at the beginning of your program:

DEFINT - Defines variables as integer

DEFDBL - Defines variables as double-precision

DEFSTR - Defines variables as string

DEFSNG - Defines variables as single-precision. (Since BASIC
classifies all variables as single precision initially

2-34

anyway, you would only need to use DEFSNG if one
of the other DEF statements was used).

For example:
DEFSTR L

makes BASIC classify all variables which start with L as string
variables. After this statement, the variables:

L LP LAST

can all hold string values only.

Type Declaration Tags

As with constants, you can always override the type of a variable
name by adding a type declaration tag at the end. The four types of
declaration tags for variables are:

% Integer
! Single precision
Double precision

$ String
For example:
1% FT% NUM% COUNTER%

are all integer variables, regardless of what attributes have been
assigned to the letters |, F, N, and C.

T! RY! QUAN! PERCENT!

are all single-precision variables, regardless of what attributes have
been assigned to the letters T, R, Q, and P.

X# RR# PREV# LSTNUM#

are all double-precision variables, regardless of what attributes have
been assigned to the letters X, R, P, and L.

Q$ CAS WRD$ ENTRY$

are all string variables, regardless of what attributes have been
assigned to the letters Q, C, W, and E.

Note that any given variable name can represent four different
variables. For example:

AS# A5l A5% A5$
are all valid and distinct variable names.

One further implication of type declaration: Any variable name
used without a tag is equivalent to the same variable name used with
one of the four tags. For example, after the statement:

2-35

DEFSTR C
the variable referenced by the name C1 is identical to the variable
referenced by the name C1$.
How BASIC Converts Numeric Data

Often your program might ask BASIC to assign one type of constant
to a different type of variable. For example:

A% = 2.34

In this example, BASIC must first convert the single-precision constant
2.34 to an integer in order to assign it to the integer variable A%.

You might also want to convert one type of variable to a different type,
such as:

Ax = A%
Al = A#
Al = A%

The conversion procedures are explained on the following pages.

Single or double precision to integer type
BASIC rounds the fractional portion of the number.

NOTE: The original value must be greater than or equal to - 32768,
and less than 32768.

Examples
A% = 32766.7
assigns A% the value 32767.
A% = 2.5D3
assigns A% the value 2500.
A% = -123.45678961234578
assigns A% the value —123.
A% = -32768.5

produces an Overflow Error (out of integer range).

Integer to single or double precision

No error is introduced. The converted value looks like the original
value with zeros to the right of the decimal place.

Examples
A% = 32767
Stores 32767.000000000000 in A#.

2-36

Al = -1234
Stores —1234.000 in A.

Double to single precision

This involves converting a number with up to 16 significant digits into
a number with no more than seven digits. BASIC rounds the number
to seven significant digits. Before printing it, BASIC rounds it off to six
digits.
Examples

Al = 1.2345678908124567
stores 1.234568 in Al. However, the statement;

PRINT A

displays the value 123457, because only six digits are displayed. The
full seven digits are stored in memory.

A! = 1.3333333333333333
stores 1.333333 in AL

Single to double precision

To make this conversion, BASIC simply adds trailing zeros to the
single-precision number. If the original value has an exact binary
representation in single-precision format, no error is introduced. For
example:

A# = 1.5

stores 1.5000000000000 in A#, since 1.5 does have an exact binary
representation.

However, for numbers which have no exact binary representation, an
error is introduced when zeros are added. For example:

A# = 1.3
stores 1.299999952316284 in A#.

Because most fractional numbers do not have an exact binary
representation, you should keep such conversions out of your
programs. For example, whenever you assign a constant value to a
double-precision variable, you can force the constant to be double
precision:

A# = 1 .3# A# = 1,3D
both store 1.3 in A#.

Here is a special technique for converting a single precision value
to double precision, without introducing an error into the double-

2-37

precision value. It is useful when the single-precision value is stored
in a variable.

Take the single-precision variable, convert it to a string with STRS,
then convert the resultant string back into a number with VAL. That is,
use:

VAL(STR$(single-precision variable))
For example, the following program:

10 A1 = 1.3
20 Ax = A1
38 PRINT A#

ptints a value of:

Compare with this program:

10 A 1.3
28 A# = VALC(STRS$CAY)
38 PRINT A#

which prints a value of:

The conversion in line 20 causes the value in A to be stored
accurately in double-precision variable A#.

Nlegal Conversions

BASIC cannot automatically convert numeric values to string, or vice
versa. For example, the statements:

A$ = 1234
A% = **1234"

are illegal. They would return a "Type mismatch” error. (Use STR$
and VAL to accomplish such conversions.)

C- How BASIC Manipulates Data

You have many fast methods you may use to get BASIC to count,
sort, test, and rearrange your data. These methods fall into two
categories:

1. Operators
a. numeric
b. string
c. relational
d. logical

2. Functions

2-38

Operators

An operator is the single symbol or word which signifies some action
to be taken on either one or two specified values referred to as
operands.

In general, an operator is used like this:

operand-1 operator operand-2
6 + 2

The addition operator + connects or relates its two operands, 6 and
2, to produce the result 8.

Operand-1 and -2 can be expressions.
A few operations take only one operand, and are used like this:

operator operand
- 5
The negative operator — acts on single operand 5 to produce the
result negative 5.

Neither 6 + 2 nor —5 can stand alone; they must be used in
statements to be meaningful to BASIC. For example:

A =6+ 2
PRINT -5

Operators fall into four categories:

¢ Numeric
& String

¢ Relational
® | ogical

based on the kinds of operands they require and the results they
produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their operands
must always be numeric, and the results they produce is one numeric
data item.

In the description below, we use the terms integer, single-precision,
and double-precision operations. Integer operations involve two-byte
operands, single-precision operations involve four-byte operands, and
double-precision operations involve eight-byte operands. The more
bytes involved, the slower the operation.

There are seven different numeric operators. Two of them, sign +
and sign —, are unary, that is, they have only one operand. A sign
operator has no effect on the precision of its operand.

For example, in the statement:
PRINT -77, +77

the sign operators ~ and + produce the values negative 77 and
positive 77, respectively.

NOTE: When no sign operator appears in front of a numeric term, +
is assumed.

The other numeric operators are all binary, that is, they all take two
operands.

These operators are, in order of precedence:

~

Exponentiation

®, / Multiplication, Division

\, MOD Integer Division, Modulus Arithmetic

+,- Addition, Subtraction
Exponentiation

The symbol ~ denotes exponentiation. It converts both its operands to
single precision and returns a single-precision result.

NOTE: To enter the ~ operator, press CLEAR(F).
For example:
PRINT 6~.3

prints 6 to the .3 power.

Multiplication

The * operator is the symbol for multiplication. Once again, BASIC
uses the precision of the more precise operand to perform the
operation (the less precise operand is converted).

Examples:
PRINT 33% * 11%
integer multiplication is performed.
PRINT 33 * 11.1
PRINT 33% * 11
single-precision multiplication is performed.
PRINT 12.345678981234567 * 11
double-precision multiplication is performed.
Division
The / symbol is used to indicate ordinary division. Both operands are

converted to single precision or double precision, depending on their
original precision:

2-40

o [f either operand is double precision, then both are converted to
double precision and eight-byte division is performed.

e |f neither operand is double precision, then both are converted to
single precision and four-byte division is performed.

Examples:
PRINT 3/4

single-precision division is performed.
PRINT 3.8/4

single-precision division is performed.
PRINT 3/1.2345678901234567

double-precision division is performed.

Integer Division

The \ (backslash) is the symbol for integer division. Both operands
are rounded to integers, and the result is truncated to an integer.

Examples

PRINT 18 \ 4
prints 2.

PRINT 68 \ 6.99

prints 9.

Modulus Arithmetic

MOD is the operator for modulus arithmetic. Both operands are
rounded to integers. The result is the integer that is the remainder of
an integer division.

Examples
PRINT 14 MOD 3
prints 1. Ten divided by 3 is 3 with a remainder of 1.
PRINT 68 MOD 6.99
prints 5. 68 divided by 7 is 3 with a remainder of 5.
Addition
The + operator is the symbol for addition. The addition is done with

the precision of the more precise operand (the less precise operand is
converted).

2-41

For example, when one operand is integer type and the other is single
precision, the integer is converted to single precision and four-byte
addition is performed. When one operand is single precision and the
other is double precision, the single-precision number is converted to
double precision and eight-byte addition is performed.

Examples:
PRINT 2 + 3

integer addition is performed.
PRINT 3.1 + 3

single-precision addition is performed.
PRINT 1.23456789081234567 + 1

double-precision addition is performed.

Subtraction

The — operator is the symbol for subtraction. As with addition, the
operation is done with the precision of the more precise operand (the
less precise operand is converted).

Examples:
PRINT 33 - t1

integer subtraction is performed.
PRINT 33 - t1.1

single-precision subtraction is performed.
PRINT 12.3456789881234567 - 11

double-precision subtraction is performed.

String Operator

BASIC has a string operator (+) which allows you to concatenate
(link) two strings into one. This operator should be used as part of a
string expression. The operands are both strings and the resulting
value is one piece of string data.

The + operator links the string on the right of the sign to the string on
the left. For example:

PRINT "CATS™ « "LOVE"™ « "MICE"
prints:
CATSLOVEMICE

Since BASIC does not allow a string to be longer than 255 characters,
you will get an error if your resulting string is too long.

Relational Operators

Relational operators compare two numerical or two string expressions
to form a relational expression. This expression reports whether the
comparison you set up in your program is true or false. It returns a
-1 if the relation is true; a 0 if it is false.

Numeric Relations

This is the meaning of the operators when you use them to compare
numeric expressions:

< Less than
> Greater than
= Equal to
<> or >< Not equal to
=< of < = Less than or equal to
= > o > = Greater than or equal to
Examples of true relational expressions:
1 < 2
2 <> 5
2 <= 5
2 <= 2
5 > 2
7 = 7

String Relations

The relational operators for string expressions are the same as above,
although their meanings are slightly different. Instead of comparing
numerical magnitudes, the operators compare their ASCll sequence.
This allows you to sort string data:

< Precedes
> Follows
> < oor <> Does not have the same precedence
< = Precedes or has the same precedence
> = Follows or has the same precedence

BASIC compares the string expressions on a character-by-character
basis. When it finds a non-matching character, it checks to see which
character has the lower ASClH code. The character with the lower
ASCII code is the smaller (precedent) of the two strings.

NOTE: Appendix C contains a listing of ASClI codes for each
character.

Examples of true relational expressions:
AT < B

The ASCII code for A is decimal 65; for B it's 66.
“CODE"” < "COOL”

2-43

The ASCII code for O is 79; for D it's 68.

If while making the comparison, BASIC reaches the end of one string
before finding non-matching characters, the shorter string is the
precedent. For example:

“TRAIL” < “TRAILER”

Leading and trailing blanks are significant. For example:
AT < AT

ASCII for the space character is 32; for A, it's 65.
“Z-80" < “Z-80A”

The string on the left is four characters long; the string on the right is
five.

How to Use Relational Expressions

Normally, relational expressions are used as the test in an IF/THEN
statement. For example:

IF A = 1 THEN PRINT "“CORRECT"

BASIC tests to see if A is equal to 1. If it is, BASIC prints the
message.

IF A$ < B$ THEN 58

if string A$ alphabetically precedes string B$, then the program
branches to line 50.

IF R$ = "“YES" THEN PRINT A$
if R$ equals YES then the message stored as A$ is printed.

However, you may also use relational expressions simply to return the
true or false results of a test. For example:

PRINT 7 = 7
prints — 1 since the relation tested is true.
PRINT "A" > "B"

prints & because the relation tested is false.

Logical Operators

Logical operators make logical comparisons. Normally, they are used
in IF/THEN statements to make a logical test between two or more
relations. For example:

IF A = 1 OR C = 2 THEN PRINT X

The logical operator, OR, compares the two relations A = 1 and
C=2

2-44

Logical operators may also be used to make bit comparisons of two
numeric expressions.

For this application, BASIC does a bit-by-bit comparison of the two
operands, according to predefined rules for the specific operator.

NQTE: The operands are converted to integer type, stored internally
as 16-bit, twos complement numbers. To understand the results of
bit-by-bit comparisons, you need to keep this in mind.

The following table summarizes the action of Boolean operators in bit
manipulation.

Meaning of First Second
Operator Operation Operand Operand Result
AND When both bits 1 1 1
are 1, the re- 1 0 0
sults will be 1. 0 1 0
Otherwise, the 0 0 0
result will be 0.
OR Result will be 1 1 1 1
unless both bits 1 0 1
are 0. 0 1 1
0 0 0
NOT Result is oppo- 1 0
site of bit. 0 1
XOR When one of the bits 1 1 0
is 1, the result is 1 0 1
1. Otherwise, the 0 1 1
result is 0. 0 0 0
EQV When both bits are 1 1 1
1 or both bits 1 0 0
are 0, the 0 1 0
result is 1. 0 0 1
IMP The result is 1 1 1 1
unless the first 1 0 4
bit is 1 and the 0 1 1
second bit is 0. 0 0 1

Hierarchy of Operators

When your expressions have multiple operators, BASIC performs the
operations according to a well-defined hierarchy so that results are
always predictable.

Parentheses

When a complex expression includes parentheses, BASIC always
evaluates the expressions inside the parentheses before evaluating

2-45

the rest of the expression. For example, the expression:

8- (3-2)

is evaluated like this:
3-2=1
8 -1=7

With nested parentheses, BASIC starts evaluating the innermost level
first and works outward. For example:

4%(2~-(3-4)

is evaluated like this:

3~ 4= -1
2 - (-1) =23
453 =12

Order of Operations

When evaluating a sequence of operations on the same level of
parentheses, BASIC uses a hierarchy to determine what operation to
do first.

The two listings below show the hierarchy BASIC uses. Operators are
shown in decreasing order of precedence and are executed as
encountered from left to right:

For Numeric Operations:

() Parentheses
. Exponentiation
+ - Unary sign operations,

not addition and subtraction

x|/ Multiplication and division
\ Integer division
MOD Modulus arithmetic
+ - Addition and subtraction
< > o= <= = <> Relational tests
NOT
AND
OR
XOR
EQV
IMP
For String Operations:
+
< > o= <= o>= <>

For example, in the line:
X+ X + 5728

2-46

BASIC finds the value of 5 to the 2.8 power. Next it multiplies X=X,
and finally it adds the value of 5 to the 2.8. If you want BASIC to
perform the indicated operations in a different order, you must add
parentheses. For example:

X = (X + 5)2.8
or
X=X + (5672.8)
Here's another example:
IF X + 8 0OR Y > @ AND Z = 1 THEN GOTO 255

The relational operators = and > have the highest precedence, so
BASIC performs them first, one after the next, from left to right. Then
the logical operations are performed. AND has a higher precedence
than OR, so BASIC performs the AND operation before OR.

If the above line looks confusing because you can’'t remember which
operator is precedent over which, then you can use parentheses to
make the sequence obvious:

IF X = 8 OR C(CY > @) AND (2 = 1)) THEN GQTD 255

Functions

A function is a built-in sequence of operations which BASIC performs
on data. BASIC functions save you from having to write a BASIC
routine, and they operate faster than a BASIC routine would.

Examples:
SAR (A + 8)

tells BASIC to compute the square root of (A + 6).
MID$ (A$,3,2)

tells BASIC to return a substring of the string A3, starting with the
third character, with a length of 2.

BASIC functions are described in more detail in Chapter 7.

If the function returns numeric data, it is a numeric function and may
be used in a numeric expression. If it returns string data, it is a string
function and may be used in a string expression.

D- How to Construct an Expression

Understanding how to construct an expression will help you put
together powerful statements — instead of using many short ones. In
this section we will discuss the two kinds of expressions you may
construct:

2-47

e Simple
e Complex

as well as how to construct a function.

As we have stated before, an expression is actually data. This is
because once BASIC performs all the operations, it returns one data
item. An expression may be string or numeric. It may be composed
of:

e Constants
e Variables
e Operators
® Functions

Expressions may be either simple or complex:

A simple expression consists of a single term: a constant, variable
or function. If it is a numeric term, it may be preceded by an optional
+ or — sign, or by the logical operator NOT.

For example:
+A 33 -5 SQR(8)

are all simple numeric expressions, since they only consist of one
numeric term.

AS STRINGS (20.A5) “WORD" “M"

are all simple string expressions, since they only consist of one string
term.

Here's how a simple expression is formed:

CONSTANT
VARIABLE
FUNCTION

A complex expression consists of two or more terms (simple
expressions) combined by operators. For example:

A1 X+32-Y 1=1 AANDB ABS(B)+LOG(2)

are all examples of complex numeric expressions. (Notice that you
can use the relational expression (1=1) and the logical expression (A
AND B) as a complex numeric expression since both actually return
numeric data.)

A$ + BS AN A STRINGS$(10, "A”) + "M"

are all examples of complex string expressions.

2-48

This is how a complex numeric expression is formed:

SIMPLE
EXPRESSION

This is how a complex string expression is formed:

Most functions, except functions returning system information, require
that you input either or both of the following kinds of data:

® One or more numeric expressions
® One or more string expressions

This is how a function is formed:

2-49

if the data returned is a number, the function may be used as a term
in a numeric expression. If the data is a string, the function may be
used as a term in a string expression.

SIN(A) STRS(X) VAL(A) LOG(.53)

are all examples of functions.

2-50

Chapter 5/ Disk Files

You may want to store data on your disk for future use. To do this,
you need to store the data in a “disk file.” A disk file is an organized
collection of related data. It may contain a mailing list, a personnel
record, or almost any kind of information.

To transfer data from a BASIC program to a disk file, and vice versa,
the data must first go through a “buffer”. This is an area in memory
where data is accumulated for further processing.

With BASIC, you can create and access two types of disk files. The
difference between these two types is that each is created in a
different “mode.” The mode you choose determines what kind of
access you will have to the file: sequential access or direct access.

Sequential-Access Files

With a sequential-access file, you can only access data in the same
order it was stored: sequentially. To read from or write to a particular
section in the file, you must first read through all the contents in the

file until you get to the desired section.

Data is stored in a sequential file as ASCIl characters. Therefore, it is
ideal for storing free-form data without wasting space between data
items. However, it is limited in flexibility and speed.

The statements and functions used with sequential files are:

OPEN WRITE# EOF
PRINT# INPUT # LOC
PRINT# USING LINE INPUT# CLOSE

These statements and functions are discussed in more detail in
Chapters 6 and 7.

Creating a Sequential-Access File

1. To create the file, OPEN it in “O" (output) mode and assign it a
buffer number (from 1 to 15).

Example
OPEN "O', 1, "LIST/EMP"

opens a sequential output file named LIST/EMP and gives buffer 1
access 1o this file.

2. To input data from the keyboard into one or more program
variables, use either INPUT or LINE INPUT. (The difference
between these two statements is that each recognizes a different
set of “delimiters”. Delimiters are characters that define where a
data item begins or ends).

2-51

Example
LINE INPUT, "NAME? "; N$
inputs data from the keyboard and stores it in variable N$.

3. To write data to the file, use the WRITE# statement (you can also
use PRINT#, but make sure you delimit the data).

Example
WRITE# 1, N$

writes variable N$ to the file, using buffer 1 (the buffer used to
OPEN the file). Remember that data must go through a buffer
before it can be written to a file.

4. To ensure that all the data was written to the file, use the CLOSE
statement.

Example
CLOSE 1

closes access to the file, using buffer 1 (the same buffer used to
OPEN the file).

Sample Program

14 QPEN ™0™, 1, "LIST/EMP"
2@ LINE INPUT "“NAME? '';N$
36 IF N$ = "DONE' THEN 68
40 WRITE# 1, N$

58 PRINT: GOTOD 28

60 CLOSE 1

RUN

NOTE: The file “LIST/EMP” stores the data you input through the
aid of the program, not the program itself (the program
manipulates data). To save the program above, you must assign it
a name using the SAVE command (refer to Chapter 1).

Example
SAVE "“PAYROLL"
would save the program under the name "PAYROLL".

NOTE: Every time you modify a program, you must SAVE it again
(you can use the same name); otherwise, the original program
remains on disk, without your latest corrections.

5. To access data in the file, reOPEN it in the “I” (input) mode.
Example
OPEN "%, 1, “LIST/EMP"

2-52

OPENSs the file named LIST/EMP for sequential input, using
buffer 1.

6. To read data from the file and assign it to program variables, use
either INPUT# or LINE INPUT#.

Examples
INPUT# 1, N$

reads a string item into N$, using buffer 1 (the buffer used when
the file was OPENed).

LINE INPUT# 1, N$
reads an entire line of data into N$, using buffer 1.

INPUT# and LINE INPUT# each recognize a different set of
“delimiters” for reading data from the file. Delimiters are characters
that define the beginning or end of a data item. See Chapter 7 for
a detailed explanation of these statements.

Sample Program

10 OPEN "I™, 1, "“LIST/EMP™
20 IF EOFC1), THEN 1080

38 INPUT# 1, N$

48 PRINT N$

50 GOTO 2@

180 CLOSE

Updating a Sequential-Access File
1. To add data to the file, OPEN it in “E” (extend) mode.
OPEN “E™, 1, “LIST/EMP™

opens the file LIST/EMP so that it can be extended. The data you
enter is appended to LIST/EMP.

2. To enter new data to the file, follow the same procedure as for
entering data in "O” mode.

The following program illustrates this technique. It builds upon the
file we previously created under the name LIST/EMP.

NOTE: Read through the entire program first. If you encounter
BASIC words (commands or functions) that are unfamiliar to you,
refer to Chapter 7 for their definitions.

NEW

1@ OPEN "E™, 1, “LIST/EMP"

280 LINE INPUT "“TYPE A NEW NAME OR PRESS <N>"; N$
38 IF N$ = "“N" THEN &8

40 WRITE# 1, N$

5@ GOTO 2@

68 CLOSE

253

If you want the program to print on your display the information
stored in the updated file, add the following lines:

70 DPEN *I', 1, “LIST/EMP"
8¢ 1F EQFC1) THEN 2829

28 INPUT# 1, N$

128 PRINT N$

118 GOTO 8¢
2089 CLOSE
RUN
Once you have RUN this program, SAVE it.
Example
SAVE '"PAYROLLZ2™ ‘saves the new program

Direct-Access Files

With a direct-access file, you can access data almost anywhere on
disk. It is not necessary to read through all the information, as with a
sequential-access file. This is possible because in a direct-access file,
information is stored and accessed in distinct units called “records”.
Each record is numbered.

Creating and accessing direct-access files requires more program
steps than sequential-access files. However, direct-access files are
more flexible and easier to update.

One important note: BASIC allocates space for records in numeric
order. That is, if the first record you write to the file is number 200,
BASIC allocates space for records 0 through 199 before storing
record 200 in the file.

The maximum number of logical records is 65,535. Each record may
contain between 1 and 256 bytes.

The statements and functions used with direct-access files are:

OPEN FIELD LSET/RSET
GET PUT CLOSE
LOC MKD$ MKI$

MKS$ CvD CVi

Cvs

These statements and functions are discussed in more detalil in
Chapters 6 and 7.

Creating a Direct-Access File

1. To create the file, OPEN it for direct access in “D” mode (“R” may
also be used. It stands for “random access”, which is simply
another name for direct access).

2-54

Example
OPEN, “D', 1, "LISTING", 32

opens the file named “LISTING”, gives buffer 1 direct access to the
file, and sets the record length to 32 bytes. (if the record length is
omitted, the default is 256 bytes). Remember that data is passed to
and from disk in records.

2. Use the FIELD statement to allocate space in the buffer for the
variables that will be written to the file. This is necessary because
you must place the entire record into the buffer before putting it
into the disk file.

Example
FIELD 1, 28 AS N$, 4 AS A$,8 AS P3

allocates the first 20 positions in buffer 1 to string variable N$, the
next four positions to A$, and the next eight positions to P$. NS,
A$ and P$ are now “field names”.

3. To move data into the buffer, use the LSET statement. Numeric
values must be converted into strings when placed in the buffer. To
do this, use the “make” functions: MKI$ to make an integer value
into a string, MKSS$ for a single-precision value, and MKDS for a
double-precision value.

Example

LSET N$=X$
LSET A$=MKSS$(AMT)

Note: RSET right justifies a string into the buffer. For example, RSET
N§ = X8$.

4. To write data from the buffer to a record (within a direct-access
disk file), use the PUT statement.

PUT 1, CODE%

writes the data from buffer 1 to a record with the number CODE%.
(The percentage sign at the end of a variable specifies that it is an
integer variable.)

The following program writes information to a direct-access file:

18 OPEN "D, 1, "LISTING", 32

20 FIELD 1, 26 AS N$, 4 AS A%, 8 AS P$
38 INPUT "2-DIGIT CODE, 6 TO END"™; CODEZ%
4@ IF CODE% = @ THEN 130

5@ INPUT “NAME'; Xs$

66 INPUT "AMOUNT"; AMT

78 INPUT PHONE®™; TELS$

88 LSET N$ = X8

90 LSET A$ = MKS${AMT)

2-b5

160 LSET P$ = TELS
11@ PUT 1, CODE%
128 GOTO 38

138 CLOSE 1

The two-digit code that you enter in line 30 becomes a record
number. That record number will store the name(s), amount(s) and
phone number(s) you enter when lines 50, 60 and 70 are executed.
The record is written to the file when BASIC executes the PUT
statement in line 110.

After typing this program, SAVE it and RUN it. Then, enter the
following data:

2-DIGIT CODE, @ TO END? 290
NAME? SMITH

AMOUNT? 34.5%

PHONE? 567-9000

2-DIGIT CODE, @ TO END? @

BASIC stored SMITH, 34.55, and 567-9000 in record 20 of file
LISTING.

Accessing a Direct-Access File

1.

OPEN the file in “D” mode ("R” can also be used).
Example
OPEN "D", 1,"FILE",32

. Use the FIELD statement to allocate space in the buffer for the

variables that will be read from the file.
Example
FIELD 1, 26 AS N$, 4 AS A$, 8 AS P$

. Use the GET statement to read the desired record from a direct

disk file into a buffer.
Example
GET 1, CODE%

gets the record numbered CODE% and reads it into buffer 1.

. Convert string values back to numbers using the "convert”

functions: CV! for integers, CVS for single-precision values, and
CVD for double-precision values.

Example

PRINT Ns
PRINT CVS(AS$)

2-56

The program may now access the data in the buffer.

The following program accesses the direct-access file “LISTING”
(created with the previous program). When BASIC executes line 30,
enter any valid record number from "LISTING”. This program will print
the contents of that record.

18 OPEN ®"D*, 1, "LISTING", 32

20 FIELD 1,20 AS N$,4 AS A$,8 AS P$

38 INPUT »2-DIGIT CODE, @ TO END®™; CODEZ
35 IF CODE% = @ THEN 1089

48 GET #1, CODE%

58 PRINT N$

60 PRINT USING "s$$# . ##"; CVS(AS$)

78 PRINT P$: PRINT

8@ GOTC 30

1809 CLOSE

After typing this program, SAVE it and RUN it. When BASIC asks you
to enter a 2-digit code, enter 20 (the record we created through the
previous program). Your display should show:

g TO ENDT 28

If you entered a record number which is not a part of “LISTING”, your
display would show:

If you wanted to go back and update “LISTING”, simply LOAD the
previous program (the one that created “LISTING”) and RUN it.

2-57

Chapter 6/ Introduction To
BASIC Statements And Functions

BASIC is made up of keywords. These keywords instruct the
computer to perform certain operations.

Chapter 7 describes all of BASIC's keywords. This chapter explains
the format used in Chapter 7. It also introduces you to BASIC's two
types of keywords: statements and functions.

Format for Chapter 7

Keyword

Syntax with parameter(s) or (expression(s))

Brief definition of keyword.
Detailed definition of keyword.

Example(s)

Sample Program(s)

This format varies slightly, depending on the complexity of each
keyword. For instance, some keywords are used alone (without
parameters or expressions). Others have several possible syntaxes.
As a general rule, definitions for statements are longer than definitions
for functions. That is because a statement is a complete instruction to
BASIC, while a function is a built-in subroutine which may only be
used as part of a statement.

Some keywords have several sample programs, others don't have
any at all. We added programs to illustrate useful applications which
may not be readily apparent. Remember that the examples are for
reference only.

IMPORTANT NOTE: BASIC requires that keywords be delimited by
spaces. This means that you must leave a space between a keyword
and any variables, constants or other keywords. The only exceptions
to this rule are characters which are shown as part of the syntax of
the keyword.

For example, if you typed:
DELETE.

BASIC would return a "Syntax error.” You must leave a blank space
between the word DELETE and the period.

For a definition of the terms and notation used in Chapter 7, see page
2-4 of the Introduction.

2-59

Statements

A program is made up of lines; each line contains one or more
statements. A statement tells the computer to perform some operation
when that particular line is executed. For example,

18¢ STOP

tells the computer to stop executing the program when it reaches line
100.

Statements for assigning values to variables and defining memory
space:

CLEAR clears all variables, allocates memory and
stack space.

COMMON passes variables to a CHAINed program.

DATA stores data in your program so that you may
assign it to a variable.

DEFDBL defines variables as double precision.

DEF FN defines a function according to your
specifications.

DEFINT defines variables as integers.

DEFSNG defines variables as single precision.

DEFSTR defines variables as strings.

DEF USR defines the entry point for USR routines.

DM dimensions an array.

ERASE erases an array.

LET assigns a value to a variable (the keyword
LET may be omitted).

MID$ reptaces a portion of a string.

OPTION BASE declares the minimum value for array
subscripts.

RANDOM reseeds the random number generator.

READ reads data stored in the DATA statement and
assigns it to a variable.

RESTORE restores the DATA pointer.

SWAP exchanges the values of variables.

Statements for altering program sequence:

CHAIN loads another program and passes variables
to the current program.

END ends a program.

FOR/NEXT establishes a program loop.

GOSsuB transfers program control to the subroutine.

GOTO transfers program control to the specified line
number.

IF...THEN...ELSE evaluates an expression and performs an
operation if conditions are met.

ON...GOSsuB evaluates an expression and branches to a
subroutine.

2-60

ON...GQOTO evaluates an expression and branches to
another program line.

RETURN returns from a subroutine to the calling
program.

STOP stops program execution.

WHILE . . . WEND executes statements in a loop as long as a
given condition is true.

WAIT suspends program execution while monitoring

the status of a machine input port.
Statements for storing and accessing data on disk:

CLOSE closes access to a disk file.

FIELD organizes a direct-access buffer.

GET gets a record from a direct-access file.

INPUT# inputs data from a disk file.

LINE INPUT# inputs an entire line from a disk file.

LSET moves data (and left-justifies it) to a field in a
direct-access file buffer.

OPEN opens a disk file.

PRINT# writes data to a sequential disk file.

PRINT# USING writes data to a disk file using the specified
format.

PUT puts a record into a direct-access file.

RSET moves data (and right-justifies it) to a field in
a direct-access file buffer.

WRITE# writes data to a sequential file.

Statements for debugging a program:

CONT continues program execution.

ERL returns the line number where an error
occurred.

ERR returns an error code after an error.

ERROR simulates the specified error.

ON ERROR GOTO sets up an error-trapping routine.

RESUME terminates an error-handling routine.

REM inserts a remark line in a program.

TROFF turns the tracer off.

TRON turns the tracer on.

Statements for inputting or outputting data to the video display or the
line printer:

CLS clears the display.

INPUT inputs data from the keyboard.

LINE INPUT inputs an entire line from the keyboard.
LIST lists a program to the display.

LLIST lists program to line printer.

LPRINT prints data at the line printer.

2-61

LPRINT USING prints data at the line printer, using the
specified format.

LPRINT TAB moves the printer’s print head to position n on
the current line.

PRINT prints data to the display.

PRINT USING prints data to the display, using the specified
format.

PRINT@ specifies where printing is to begin.

PRINT TAB moves the cursor to position n on the current
line.

WIDTH sets number of characters to print per line on
the display or line printer.

WRITE prints data on the display.

Statements for performing system functions or entering other modes
of operation:

AUTO automatically numbers program lines.

CALL calls an assembly-language subroutine.

DELETE erases program lines from memory.

DEF USR specifies the starting address of an assembly-
language subroutine.

EDIT edits program lines.

KILL deletes a disk file.

LOAD loads a program from disk.

MERGE merges a disk program with a resident
program.

NAME renames a disk file.

NEW erases a program from RAM.

ouT sends a byte to a machine output port.

POKE writes a byte into a memory location.

RENUM renumbers a program.

RUN executes a program.

SAVE saves a program on disk.

SOUND generates a sound

SYSTEM returns to TRSDOS.

Functions

A function is a built-in subroutine. It may only be used as part of a
statement.

Most BASIC functions return numeric or string data by performing
certain built-in routines. Special print functions are used to control the
video display.

Numeric Functions (return a number):

ABS computes the absolute value.
ASC returns the ASCII code.

ATN computes the arctangent.
CDBL converts to double precision.

2-62

CINT returns the largest integer not greater than
the parameter.

COSs computes the cosine.

CSNG converts to single precision.

EXP computes the natural exponential.

FIX truncates to whole number.

FRE returns the number of bytes in memory not
being used.

INSTR searches for a specified string.

INP returns the byte read from a port.

INT returns the largest whole number not greater
than the argument.

LEN returns the length of the string.

LOG computes the natural logarithm.

MEM returns the amount of memory.

PEEK returns a byte from a memory location.

RND returns a pseudorandom number.

SGN returns the sign.

SIN caiculates the sign.

SQR caiculates the square root.

TAN computes the tangent.

USR calis an assembly-language subroutine.

VAL returns the numeric vaiue of a string.

VARPTR returns an address for a variable or buffer.

String Functions (return a string value):

CHR$ returns the specified character.

DATES$ returns today's date.

ERRS$ returns the latest TRSDOS error number and
message.

HEX$ converts a decimai value to a hexadecimal
string.

LEFTS returns the left portion of a string.

MIiD$ returns the mid-portion of a string.

OCTS$ converts a decimal value to an octal string.

RIGHTS returns the right portion of a string.

SPACE$ retumns a string of spaces.

STR$ converts to string type.

STRINGS returns a string of characters.

TIMES returns the time.

Input/Output Functions (perform input/output to the keyboard, dispiay,
line printer or disk files):

INKEY$ returns the keyboard character.

INPUTS returns a string of characters from the
keyboard.

POS returns the cursor column position on the
display.

ROW returns the row position on the display.

SPC prints spaces to the display.

2-63

CvD

CVI
Cvs

EOF
INPUTS

LOC
LOF
LPOS
MKI$
MKS$

MKD$

restores data from a direct disk file to double
precision.

restores data from a direct disk file to integer.
restores data from a direct disk file to single
precision.

checks for end-of-file.

inputs a string of characters from a sequential
disk file.

returns the current disk file record number.
returns the disk file's end-of-file.

returns the logical position of the printer's
print head within the printer’s buffer.

converts an integer value to a string for
writing it to a direct-access disk file.

converts a single-precision number to a string
for writing it to a direct-access file.

converts a double-precision value to a string
for writing it to a direct-access file.

2-64

Chapter 7/ Statements And Functions

ABS

Function

ABS(number)

Computes the absolute value of number.

ABS returns the absolute value of the argument, that is, the
magnitude of the number without respect to its sign.

If number is greater than or equal to zero, ABS(number) = number. If
number is less than zero, ABS(negative number) = number.

Example

X = ABS(Y)>
computes the absolute value of Y and assigns it to X.
Sample Program

182 INPUT "WHAT’S THE TEMPERATURE OUTSIDE
(DEGREES F)"™; TEMP

118 IF TEMP < THEN PRINT "THAT’S'" ABS(TEMP)
"BELOW ZERO! BRRiI™: END

120 IF TEMP = @ THEN PRINT "ZERO DEGREES! MITE
COLD!"™: END

138 PRINT TEMP "DEGREES ABOVE ZERO? BALMYIm:
END

2-65

ASC

Function
ASC(string)

Returns the ASCII code for the first character of string.

The value is returned as a decimal number. If string is null, an “lilegal
function call" error occurs.

Example

PRINT ASCC("A')
prints 5, the ASCII code for "A™.
Sample Programs

ASC can be used to make sure that a program is receiving the proper
input. Suppose you've written a program that requires the user to
input hexadecimal digits 0-9, A-F. To make sure that only those
characters are input, and exclude all other characters, you can insert
the following routine.

188 INPUT “ENTER A HEXADECIMAL VALUE
(B-9,A-FI";5N$

118 A = ASC(N$) ‘get ASCII code

128 1F A>47 AND A<58 OR A>64 AND A<71 THEN PRINT
“OK.": GOTO 1082

138 PRINT "VALUE NOT OK.'" : GOTO 1090

ASC can also be used to program the special function keys, as in the
following program.

188 CLS : PRINT "Enter ANY Keyboard Character : '
110 IN$ = INKEY$: IF IN$ = "' /THEN GOTO 1190

1286 A = ASCCINS)

136 IF A = 129 THEN IN$ = CHR$(13) + "“F1 KEY" +

CHR$(13)

149 1IF A = 130 THEN IN$ = CHR$C(13) + "F2 KEY'" +
CHR$(13)

158 IF A = 131 THEN IN$ = CHR$(13) + "“F3 KEY' +
CHR$(13)

168 PRINT IN$;
17¢ GOTO 118
188 END

2-66

ATN

AUTO

Function
ATN(number)

Computes the arctangent of number in radians.

ATN returns the angle whose tangent is number. The result is always
single precision, regardless of number's numeric type.

To convert this value to degrees, multiply ATN(number) by 57.29578.
Example
X = ATNCY/3)

computes the arctangent of Y/3 and assigns the value to X.

Statement
AUTO [iine][,increment]

Automatically generates a line number every time you press (ENTER).
Immediately following the line number, you can enter your text for that
line.

AUTO begins numbering at /ine and displays the next line using
increment. The default for both values is 10. A period { .) can be
substituted for /ine. In this case, BASIC uses the current line number.

If AUTO generates a line number that has already been used, it
displays an asterisk after the number. To save the existing line, press
immediately after the asterisk. AUTO then generates the next
line'number.

To turn off AUTO, press BREAK). The current line is canceled and
BASIC returns to command level.

2-67

Examples
AUTO
generates lines 10, 20, 30, 40.
AUTO 108, S8
generates lines 100, 150, 200, 250 . . .

CALL

Statement

CALL variable [(parameter list)]

Transfers program control to an assembly-language subroutine stored
at variable.

Variable contains the address where the subroutine starts in memory.
Variable may not be an array variable.

Parameter list contains the values that are passed to the external
subroutine. Parameter list may contain only variables.

A CALL statement with no parameters generates a simple Z2-80
"CALL” instruction. The corresponding subroutine should return with a
simple "RET".

The method for passing parameters depends upon the number of
parameters to pass:

1. If the number of parameters is less than or equal to 3, they
are passed in the registers. HL contains the address pointing
to parameter 1. DE contains the address pointing to
parameter 2. BC contains the address pointing to parameter
3.

2. If the number of parameters is greater than 3, they are
passed as follows:

HL contains the address pointing to parameter 1.
DE contains the address pointing to parameter 2.

BC points to the low byte of a contiguous data block
containing parameters 3 through n (that is, to the low byte of
parameter 3).

2-68

CDBL

Note that with this scheme, the subroutine must know how many
parameters to expect in order to find them. The calling program is
responsible for passing the correct number of parameters.

When accessing parameters in a subroutine, remember that they are
pointers to the actual arguments passed.

NQTE: The number, type and length of the parameters in the calling
program must match with the parameters expected by the subroutine.
This applies to BASIC subroutines, as well as those subroutines
written in assembly language.

See also USR and VARPTR.
Example

118 MYROUT = &HDOOS
126 CALL MYROUTCI,J,K)

We assume that D000 is the address for an assembly-language
routine. The values of |, J, and K (which we also assume were given
elsewhere) are passed to that routine.

Function
CDBL(number)

Converts number to double precision.

CDBL returns a 17-digit value. This function may be useful if you want
to force an operation to be performed in double precision, even
though the operands are single precision or integers.

Sample Program

218 A=454.67
228 PRINT A; CDBLCA)
RUN
454.67 454.6700134277344
Ready

2-69

CHAIN

Statement
CHAIN [MERGE | “filespec” [,[line] [,ALL] [,DELETE line-line]]

Causes a second BASIC program, named filespec, to be loaded and
executed.

Filespec must have been saved in ASCII format before you can
CHAIN it. To do this, use SAVE with the 'A’ option.

Line is the first line to be run in the CHAINed program. if omitted,
execution begins at the first program line of the CHAINed program.

The ALL option passes every variable in the main program to the
chained program. If omitted, the main program must contain a
COMMON statement to pass variables. If you will be CHAINing
subsequent programs (and passing variables), each new program
must contain a COMMON statement.

The MERGE option "overlays” the lines of filespec with the main
program. See MERGE to understand how BASIC overlays (merges)
program lines.

The DELETE option deletes /ines in the overlay so that you can
MERGE in a new overlay.

Examples
“CHAIN PROG2™

loads PROG2, chains it to the main program currently in memory, and
begins executing it.

“"CHAIN SUBPROG/BAS"™ ,, ALL

loads, chains and executes SUBPROG/BAS. The values of all the
variables in the main program are passed to SUBPROG/BAS.

Sample Program 1

18 REM THIS PROGRAM DEMONSTRATES
CHAINING USING COMMON TO PASS VARIABLES.
29 REM SAVE THIS MODULE ON DISK AS “PROGH™
USING THE A COPTION.
3¢ DIM A$C2),B$(2)
49 COMMON A$C),B$C)
50 A$C1)="VARIABLES IN COMMON MUST BE ASSIGNED ™

2-70

68 A$(2)="VALUES BEFDRE CHAINING"

70 B$C1)y="":Bs(2)=""

88 CHAIN "PROG2"

90 PRINT : PRINT B$C1): PRINT : PRINT B$(2):
PRINT

188 END

Save this program as “PROG1", using the 'A’ option (Type: SAVE
“filespec”, A). Type NEW, then enter the following program.

1¢ REM THE STATEMENT "DIM A$(2),B$(2)" MAY
ONLY BE EXECUTED ONCE.

2@ REM HENCE, IT DOES NOT APPEAR IN THIS M™MODULE.

3¢ REM SAVE THIS MODULE ON THE DISK AS "PRrROG2"
USING THE A OPTION.

42 COMMON A$(),BsC)

52 PRINT: PRINT A$C(1);A$(2)

68 B$(1)="NOTE HOW THE OPTION OF SPECIFYING A
STARTING L INE NUMBER"™

78 B$(2)="WHEN CHAINING AVOIDS THE DIMENSION
STATEMENT IN ‘PROGT."™

8¢ CHAIN "PROG1',90

98 END

Save this program as "PROG2", using the 'A’ option. Load PROG1
and run it. Your screen should display:

VARTABLES W COMMODN MUST BE ASSIGHNED VALUES
BEFORE CHAINING. HOTE HOW THE OPTION OF
SPECIFYING A STARTING LINE NUMBER WHEN
CHAINING AVOIDS THE DIMENSION STATEMENT IN
TPROGT .

Type NEW and this program:
Sample Program 2

10 REM THIS PROGRAM DEMONSTRATES CHAINING
USING THE MERGE AND ALL OPTIONS.

20 A$="MAINPROG"

3@ CHAIN MERGE "“OVRLAY1', 1200, ALL

40 END

Save this program as "MAINPROG", using the 'A’ option. Enter NEW,
then type:

1208 PRINT A$;' HAS CHAINED TO OVRLAY1."
10190 A$="0VRLAY1"
1020 B$="0VRLAY2"

1838 CHAIN MERGE "“DVRLAY2'"™, 1888, ALL , DELETE
1020-104¢2
1040 END

2-71

Save this program as “OVRLAY1”, using the ‘A’ option. Enter NEW,
then type:

1008 PRINT AS; " HAS CHAINED TO ";B$;"."
1818 END

Save this program as “OVRLAY2", using the ‘A’ option. Load
MAINPROG and run it. Your screen should display:

MEINPROG HAS CHAINED TO OVRLAY1.
OVRLAYT HAS CHAINED TO OQVRLAY2.

NOTE

The CHAIN statement with the MERGE option leaves the files
open and preserves the current OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve
variable types or user-defined functions for use by the chained
program. That is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or
DEF FN statements containing shared variables must be restated
in the chained program.

When using the MERGE option, user-defined functions should be
placed before any CHAIN MERGE statements in the program.
Otherwise, the user-defined functions will be undefined after the
merge is complete.

CHRS$

Function
CHRS$(code)

Returns the character corresponding to an ASCII or control code.

This is the inverse of the ASC function. CHR$ is commonly used to
send a special character to the display.

Examples
PRINT CHR$(35)

prints the character corresponding to ASCII code 35 (the character
is #).

2-72

CINT

PRINT CHR$(16)

puts the display into its black-on-white or black-on-green mode, also
called reverse video mode. PRINT CHR$(28) returns it to white-on-
black or green-on-black and converts all reverse video characters into
graphics characters. See Appendix C for more information.

Sample Program

The following program lets you investigate the effect of printing codes
32 through 255 on the display. (Codes 0-31 represent certain control
functions.)

188 CLS

118 INPUT “TYPE IN THE CODE (32-255)"; C
126 PRINT CHR$(C);

136 GOTOD 118

For a complete list and discussion of output to the video display, see
the Character Codes table in Appendix C. See also the sample
program given for the ASC function of BASIC.

Function
CINT(number)

Converts number to integer representation.
CINT rounds the fractional portion of number to make it an integer.

For example, PRINT CINT(1.5) returns 2; PRINT CINT(— 1.5) returns
—2. The result is a two-byte integer.

Sample Program

PRINT CINTC(17.865)
8
Rendy

2-73

CLEAR

Statement
CLEAR [,memory location] [,stack space]

Clears the value of all variables and CLOSEs all open files.

Memory location must be an integer. It specifies the highest memory
location available for BASIC. The default is the current top of memory
(as specified when BASIC was loaded or by the location of HIGHS$).
This option is useful if you will be loading a machine-language
subroutine, since it prevents BASIC from using that memory area.

Stack space must also be an integer. This sets aside memory for
temporarily storing internal data and addresses during subroutine calls
and during FOR/NEXT loops. The default is 512 bytes or one-eighth
of the memory available, whichever is smaller. An “Out of memory”
error occurs if there is insufficient stack space for program execution.

NOTE: BASIC allocates string space dynamically. An “Out of string
space” error occurs only if no free memory is left for BASIC.

Since CLEAR initializes all variables, you must use it near the
beginning of your program, before any variables have been defined
and before any DEF statements.

Examples:
CLEAR

clears all variables and closes all files.
CLEAR ,45008

clears all variables and closes all files; makes 45000 the highest
address BASIC may use to run your programs.

CLEAR ,61000,200

clears all variables and closes all files; makes 61000 the highest
address BASIC may use to run your programs, and allocates 200
bytes for stack space.

CLOSE

Statement
CLOSE [buffer, .. .]

Closes access to a file.

Buffer is a number from 1 - 15 used to OPEN the file. If no buffers are
specified, BASIC closes all open files.

This command terminates access to a file through the specified buffer.
If a buffer was not assigned in a previous OPEN statement, then

CLOSE buffer
has no effect.

Do not remove a diskette which contains an open file. CLOSE the file
first. This is because the last records may not have been written to
disk yet. Closing the file writes the data, if it hasn’t already been
written.

See also OPEN and the chapter on ‘Disk Files’.
Examples
CLOSE 1, 2, 8

terminates the file assignments to buffers 1,2, and 8. These buffers
can now be assigned to other files with OPEN statements.

CLOSE FIRST% + COUNTY

terminates the file assignment to the buffer specified by the sum
FIRST% + COUNT%.

2-75

CLS

COMMON

Statement
CLS

Clears the screen and moves the cursor to the upper-left corner. All
characters on the screen are erased.

Reverse video is enabled, and the screen is set to 80-column mode.
Sample Program

540 CLS

550 FOR I = 1 TO 24

560 PRINT STRING$(79,33)
570 NEXT 1

580 GOTO 548

Statement
COMMON variable, . ..

Reserves space for variables so they can be passed to a CHAINed
program.

COMMON may appear anywhere in a program, but we recommend
using it at the beginning.

The same variable cannot appear in more than one COMMON
statement. To specify array variables, append “()" to the variable
name. If all variabies are to be passed, use CHAIN with the ALL
option and omit the COMMON statement.

NOTE: array variables used in a COMMON statement must have
been declared in a DIM statement.

2-76

CONT

Example

96 DIM D(&0)
108 COMMON A, B, C, DC),G$
118 CHAIN "PROG3™, 180

line 100 passes variables A, B, C, D and G$ to the CHAIN command
in line 110.

See also CHAIN.

Statement
CONT

Resumes program execution.

You may only use CONT if the program was stopped by the
key, a STOP or an END statement in the program.

CONT is primarily a debugging tool. During a break or stop in
execution, you may examine variable values (using PRINT) or change
these values. Then type CONT (ENTER); execution continues with the
current variable values.

You cannot use CONT after editing your program lines or otherwise
changing your program. CONT is also invalid after execution has
ended normally.

Example
18 INPUT A, B, C
20 K=A"2
30 L=B"3/ .26
40 STOP

50 M=C+48+K+108: PRINT M

Run this program. (To enter the ", press ().) You will be
prompted with:

7
Type:
1, 2, 3(ENTER

2-77

COs

The computer displays:
Break in 48
You can now type any immediate command.
For example:
PRINT L
displays 30.7692. You can also change the value of A, B, or C.
For example:
C =4
changes the value of C in the program. Type:
CONT
your screen displays; 144.
See also STOP.

Function
COS(number)

Computes the cosine of number.

COS returns the cosine of number in radians. The number must be
given in radians. When number is in degrees, use COS(number *
.01745329).

The result is always single precision.
Examples
Y = COSCX + .61745329)
stores in Y the cosine of X, if X is an angle in degrees.
PRINT C0S(5.8) - COS(85 * .42)
prints the arithmetic (not trigonometric) difference of the two cosines.

2-78

CSNG

Function
CSNG(number)

Converts number to single precision.

If number is double precision, when its single-precision value is
printed, only six significant digits are shown. BASIC rounds the
number in this conversion.

Example

PRINT CSNG(.145388556¢9)
prints 145389
Sample Program

280 V# = 876.2345678#

298 PRINT V#; CSNG(V#)

RUN

876.234567800600061 876,235
Ready

2-79

CVD, CVI, CVS

Function
CVD(eight-byte string)
CVS(four-byte string)
CVi(two-byte string)

Convert string values to numeric values.

These functions let you restore data to numeric form after it is read
from disk. Typically, the data has been read by a GET statement, and
is stored in a direct access file buffer.

CVD converts an eight-byte string to a double-precision number. CVS
converts a four-byte string to a single-precision number. CVi converts
a two-byte string to an integer.

CVD, CVI, and CVS are the inverses of MKD$, MKI$, and MKSS$,
respectively.

Examples

Suppose the name GROSSPAYS references an eight-byte field in a
direct-access file buffer, and after GETting a record, GROSSPAY'$
contains an MKDS$ representation of the number 13123.38. Then the
statement

Ax CVD(GROSSPAY$)

assigns the numeric value 13123.38 to the double-precision variable
A#.

Sample Program

This program reads from the file “TEST/DAT", which is assumed to
have been previously created. For the program that creates the file,
see MKD$, MKI$, and MKS$.

1420 OPEN **D*, 1, “TEST/DAT*, 14

1430 FIELD 1, 2 AS 11%, 4 AS 12%, 8 AS 13%
1440 GET 1

1458 PRINT CVICI1$), CVSCi2$), CVD(I3$)
1460 CLOSE

NOTE: GET without a record number tells BASIC to get the first
record from the file, or the record following the last record accessed.

2-80

DATA

Statement
DATA constant, . ..

Stores numeric and string constants to be accessed by a READ
statement.

This statement may contain as many constants (separated by
commas) as will fit on a line. Each will be read sequentially, starting
with the first constant in the first DATA statement, and ending with the
last item in the last DATA statement.

Numeric expressions are not allowed in a DATA list. If your string
values include leading blanks, colons, or commas, you must enclose
these values in double quotation marks.

DATA statements may appear anywhere it is convenient in a program.
The data types in a DATA statement must match up with the variable
types in the corresponding READ statement, otherwise a “Syntax
error” occurs.

Examples

1348 DATA NEW YORK, CHICAGO, LOS ANGELES,
PHILADELPHIA, DETROIT

stores five string data items. Note that quote marks aren‘t needed,
since the strings contain no delimiters and the leading blanks are not
significant.

1358 DATA 2.72, 3.14159, 8.8174533, 57.29578
stores four numeric data items.
1360 DATA "SMITH, T.H.", 38, "THORN, J.R.", 41

stores both types of constants. Quote marks are required around the
first and third items because they contain commas (commas are
delimiters within data fields).

Sample Program

NEW

18 PRINT "CITY", "STATE", “ZIP"

2@ READ C$,5%,2

38 DATA “DENVER,", COLORADO, 88211

48 PRINT C$,5%,Z

This program READS string and numeric data from the DATA
statement in line 30.

2-81

DATE$

Function
DATES

Returns today's date.

The operator sets the date when TRSDOS is started up.
(This system supports dates between January 1, 1980 and December
3, 1987).

During a program, if you request the date, BASIC displays it in this
fashion:

83/12/83
Sample Program
1090 PRINT "Inventory Check:™

1100 IF DATES = "@1/31/80" THEN PRINT "Today is
the last day of January 1980. Time to
perform monthly inventory.": END

2-82

DEFDBL/INT/SNG/STR

Statement
DEFDBL letter, . ..

DEFINT Jetter, . ..
DEFSNG letter, . ..
DEFSTR letter, . ..

Defines any variables beginning with /etter(s) as: (DBL) double
precision, (INT) integer, (SNG) single precision, or (STR) string.

NOTE: A type declaration character always takes precedence over a
DEF statement.

Examples
19 DEFDBL L-P
classifies all variables beginning with the letters L through P as

double-precision variables. Their values include 17 digits of precision,
though only 16 are printed out.

19 DEFSTR A
classifies all variables beginning with the letter A as string variables.
18 DEFINT I-N, W,Z

classifies all variables beginning with the letters | through N, W and Z
as integer variables. Their values are in the range — 32768 to 32767.

18 DEFSNG I, G-T

classifies all variables beginning with the letters | or Q through T as
single-precision variables. Their values include seven digits of
precision, though only six are printed out.

2-83

DEF FN

Statement
DEF FN function name {{variable, . . .)] =function definition

Defines function name according to your function definition.

Function name must be a valid variable name. The type of variable
used determines the type of value the function will return. For
example, if you use a single-precision variable, the function will
always return single-precision values.

Variable represents those variables in function definition that are to be
replaced when the function is called. If you enter several variables,
separate them by commas.

Function definition is an expression that performs the operation of the
function. A variable used in a function definition may or may not
appear as variable. If it does, BASIC uses its value to perform the
function. Otherwise, it uses the current value of the variable.

Once you define and name a function (by using this statement), you
can call it and BASIC performs the associated operations.

Examples
DEF FNR = RND(28)+9

defines a function FNR to return a random value between 10 and 99.
Notice that the function can be defined with no arguments.

218 DEF FNW# (A#,B#)=(A#-B#I*(A#-B#)
288 T = FNW#CL#,J#)

defines function FNW# in line 210. Line 280 calls that function and
replaces parameters A# and B# with parameters |# and J#. (We
assume that |# and J# were assigned values elsewhere in the
program.)

NOTE: Using a variable as a parameter in a DEF FN statement has
no effect on the value of that variable. You may use that variable in
another part of the program without interference from DEF FN.

2-84

DEF USR

Statement
DEF USR|digit]=address

Defines the starting address for the assembly-language subroutine
identified by digit.

A program may contain any number of DEF USR statements, allowing
access 1o as many subroutines as necessary. However, only 10
definitions may be in effect at one time.

If you omit digit, BASIC assumes USRG@.
See also USR, VARPTR and CALL.
Examples

DEF USR3 = &HF700

assigns the starting address F700 hexadecimal, 63231 decimal, to the
USRS call. When your program calls USR3, control branches to your
subroutine beginning at F700.

DEF USR = (BASE + 16)
assigns the starting address of BASE + 16 to the USR@ subroutine.

2-85

DELETE

Statement
DELETE line1 - line2

Deletes from line? through line2 of a program in memory.

"o

A period (".") can be substituted for either line7 or line2 to indicate the
current line number.

Examples
DELETE 78
deletes line 70 from memory. If there is no line 70, an error will occur,
DELETE S8-110
deletes lines 50 through 110 inclusive.
DELETE -48
deletes all program lines up to and including line 40.
DELETE ~.

deletes all program lines up to and including the line that has just
been entered or edited.

DELETE

deletes the program line that has just been entered or edited.

2-86

DIM

Statement
DIM array (dimension(s)), array (dimension(s)), . ..

Sets aside storage for arrays with the dimensions you specify.

Arrays may be of any type: string, integer, single precision or double
precision, depending on the type of variable used to name the array.
If no type is specified, the array is classified as single precision.

When you create the array, BASIC reserves space in memory for
each element of the array. All elements in a newly-created array are
set to zero (numeric arrays) or the null string (string arrays).

NOTE: The lowest element in a dimension is always zero, unless
OPTION BASE 1 has been used.

Arrays can be created implicitly, without explicit DIM statements.

Simply refer to the desired array in a BASIC statement. For example,
ACS) = 30

creates array A and assigns element A(5) the value of 300. Each

dimension of an implicitly-defined array is 11 elements deep,
subscripts 0 —10.

Examples

DIM ARC108)
sets up a one-dimensional array AR(), containing 101 elements:
AR(0), AR(1), AR(2), ..., AR(98), AR(99), and AR(100).

NOTE: The array AR() is completely independent of the variables
AR.

DIM L1%(8,25)

sets up a two-dimensional array L1%(,), containing 9 x 26 integer
elements, L1%(0,0), L1%(1,0), L1%(2,0), . . . ,L1%(8,0),

L1%(0,1), L1%(1,1), ... ,L1%(8,1), . . . ,L1%(0,25), L1%(1,25), . . .,
L1%(8,25).

Two-dimensional arrays like AR(,) can be thought of as a table in
which the first subscript specifies a row position, and the second
subscript specifies a column position:

2-87

EDIT

4,0 8,1 8,2 4,3 8,23 8,24 8,25
1,8 1,1 1,2 1,3 ,23 ,24 1,25
7,8 7,1 7,2 7,3 7,23 7,24 7,25
8,0 8,1 8,2 8,3 8,23 8,24 8,25

DIM B1(2,5,8), CR(2,5,8), LY$(58,2)
sets up three arrays:

B1(,,) and CR (, ,) are three-dimensional, each containing 3x6+9
elements.

LY(,) is two-dimensional, containing 513 string elements.

Statement
EDIT line

Enters the edit mode so that you can edit the statement on line.
See the chapter on the “Edit Mode” for more information.
Examples

EDIT 100
enters edit mode at line 100.

EDIT

enters edit mode at current line.

2-88

END

Statement
END

Ends execution of a program.

This statement may be placed anywhere in the program. It forces
execution to end at some point other than the last sequential line.

An END statement at the end of a program is optional.
Sample Program

4@ INPUT S1, S2

58 GOSUB 1080

55 PRINT H

68 END

1080 H=SGR(S1*S1 + S52«S2)
118 RETURN

line 60 prevents program control from “crashing” into the subroutine.
Line 100 may only be accessed by a branching statement, such as
GOSUB in line 50.

2-89

EOF

Function
EOF(buffer)

Detects the end of a file.

This function checks to see whether all characters up to the end-of-file
marker have been accessed, so you can avoid "input past end” errors
during sequential input.

EOF(buffer) returns 0 (false) when the EOF record has not been read
yet, and ~1 (true) when it has been read. The buffer number must
access an open file.

Sampie Program -

The following sequence of lines reads numeric data from DATA/TXT
into the array A(). When the last data character in the file is read, the

EOF test in line 30 "passes”, so the program branches out of the disk
access loop.

1476 DIM AC180) “ASSUMING THIS IS A SAFE VALUE
1480 OPEN "I™, 1, "DATA/TXT"
1490 1% = @

1580 IF EOFC1) THEN 1549

1518 INPUT #1, ACIZ)

1520 1% = 1% + 1

1530 GOTO 15080

1549 REM PROG, CONT. HERE AFTER DISK INPUT

2-90

ERASE

Statement
ERASE array, . ..

Erases one or more arrays from a program.

This lets you to either redimension arrays or use their previously
allocated space in memory for other purposes.

If one of the parameters of ERASE is a variable name which is not
used in the program, an " lilegal Function Call’ occurs.

Example

450 ERASE C,F
460 DIM F(92)

line 450 erases arrays C and F. Line 460 redimensions array F.

ERL

Statement
ERL

Returns the line in which an error has occurred.

This function is primarily used inside an error-handling routine. tf no
error has occurred when ERL is called, line number 0 is returned.
Otherwise, ERL returns the line number in which the error occurred. if
the error occurred in the command mode, 65535 (the largest number
representable in two bytes) is returned.

Examples
PRINT ERL
prints the line number of the error.
£ = ERL
stores the error’s line number for future use.

For an example of how to use ERL in a program, see ERROR.

ERR

ERRS$

Statement
ERR

Returns the error code (if an error has occurred).

ERR is only meaningful inside an error-handling routine accessed by
ON ERROR GOTO. See Appendix D for a list of Error Codes.

Example
IF ERR = 7 THEN 1000 ELSE 2880

branches the program to line 1000 if the error is an "Out of Memory”
error (code 7); if it is any other error, control goes instead to line
2000.

For an example of how to use ERR in a program, see ERROR.

Function
ERRSS

Returns a system error number and message.

This function returns the number and description of the TRSDOS error
that caused the latest BASIC disk-related error. i no TRSDOS error
has occurred, ERRSS returns a null string.

Example
PRINT "“THE LATEST TRSDOS ERROR IS ™; ERRSS
prints the latest error number message.

2-93

ERROR

Statement
ERROR code

Simulates a specified error during program execution.

Code is an integer expression in the range 0 to 255 specifying one of
BASIC's error codes.

This statement is mainly used for testing an ON ERROR GOTO
routine, When the computer encounters an ERROR code statement, it
proceeds as if the error corresponding to that code had occurred.
(Refer to Appendix D for a listing of Error Codes and their meanings).

Example
ERROR 1

a "Next Without For” error (code 1) "occurs” when BASIC reaches
this line.

Sample Program

110 ON ERROR GOTO 408

128 INPUT "WHAT IS YOUR BET"™; B

130 IF B>5008 THEN ERROR 21 ELSE GOTO 428

480 IF ERR = 21 THEN PRINT "HOUSE LIMIT IS $50068"
418 IF ERL = 1386 THEN RESUME 508

420 S = S+B

438 GOTC 129

588 PRINT "THE TOTAL AMOUNT OF YOUR BET [IS"™;S

518 END

This program receives and totals bets until one of them exceeds the
house limit.

2-94

EXP

Function
EXP(number)

Calculates the natural exponent of number.

Returns e (base of natural logarithms) to the power of number. This is
the inverse of the LOG function; therefore, number =
EXP(LOG(number)). The number you supply must be less than or
equal to 87.3365.

The result is always single precision.
Example

PRINT EXP(-2)
prints the exponential value .135335.
Sample Program

318 INPUT ""NUMBER"™; N
320 PRINT "™E RAISED TO THE N POWER IS"™ EXP(N)

2-95

FIELD

Statement

FIELD buffer, length AS field name, . ..

Divides a direct-access buffer into one or more fields. Each field is
identified by field name and is the /ength you specify.

Field name must be a string variable.

This divides a direct file buffer so that you can send data from
memory to disk and disk to memory. FIELD must be run prior to GET
or PUT.

Before "fielding” a buffer, use an OPEN statement to assign that
buffer to a particular disk file. (The direct access mode, i.e., OPEN
"D”, ... must be used.) The sum of all field lengths should equal the
record length assigned when the file was OPENed.

You may use the FIELD statement any number of times to “re-field” a
file buffer. "Fielding” a buffer does not clear the buffer's contents; only
the means of accessing it. Also, two or more field names can
reference the same area of the buffer.

See also the chapter on “Disk Files”, OPEN, CLOSE, PUT, GET,
LSET, and RSET.

Example
FIELD 3, 128 AS A%, 128 AS B$

tells BASIC to assign two 128-byte fields to the variables A$ and BS.
If you now print A$ or B$, you will see the contents of the field. Of
course, this value would be meaningless unless you have previously
used GET to read a 256-byte record from disk.

NOTE: All data — both strings and numbers — must be placed into
the buffer in string form. There are three pairs of functions (MKI$/CV1,
MKS$/CVS, and MKD$/CVD) for converting numbers to strings and
strings to numbers.

FIELD 3, 16 AS NM$, 25 AS AD$, 18 AS CY$, 2 AS
ST$, 7 AS ZP$

assigns the first 16 bytes of buffer 3 to field NM$; the next 25 bytes to
ADS$: the next 10 to CY$; the next 2 to ST$; and the next 7 to ZP$.

2-96

FIX

Function
FIX(number)

Returns the truncated integer of number.

All digits to the right of the decimal point are simply chopped off, so
the resultant value is a whole number. For a negative, non-whole
number X, FIX(X) = INT(X) + 1. For all others, FIX(X) = INT(X).

The result is the same precision as the argument (except for the
fractional portion).

Examples

PRINT FIX (2.8)
prints 2.

PRINT FIX(-2.8)
prints -2.

2-97

FOR/NEXT

Statement
FOR variable = initial value TO final value [STEP increment]
NEXT [variable]

Establishes a program loop.

A loop allows for a series of program statements to be executed over
and over a specified number of times.

BASIC executes the program lines following the FOR statement until it
encounters a NEXT. At this point, it increases variable by STEP
increment. If the value of variable is less than or equal to final value,
BASIC branches back to the line after FOR, and repeats the process.
If variable is greater than final value, it completes the loop and
continues with the statement after NEXT.

If increment has a negative value, then the final value of variabfe is
actually lower than the initial value. BASIC always sets the final value
for the loop variable before setting the initial value.

NOTE: BASIC skips the body of the loop if initial value times the sign
of STEP increment exceeds final value times the sign of STEP
increment.

Example

28 FOR H=1 70 -1@ STEP -2
38 PRINT H
42 NEXT H

the initial value of H times the sign of STEP increment is greater than
the final value of H times the sign of STEP increment, therefore
BASIC skips the body of the loop. (The sign of STEP increment is
negative in this case.)

Sample Program

8298 1=5

838 FOR I = 1 70 I + S
848 PRINT I;

858 NEXT

RUN

2-98

this loop is executed ten times. It produces the following output:
1 2 3 4 5 6 7 8 9 18

Nested Loops

FOR/NEXT loops may be "nested”. That is, a FOR ... NEXT loop
may be placed within the context of another FOR . .. NEXT loop.

The NEXT statement for the inside loop must appear before the
NEXT for the outside loop. If nested loops have the same end point, a
single NEXT statement may be used for all of them.

Sample Program

880 FOR I = 1 TO 3

890 PRINT "OUTER LOOP™
300 FOR J = 1 TO 2

310 PRINT "INNER LOOP™
928 NEXT J

938 NEXT I

This program performs three "outer loops” and within each, two "inner
loops”.

The NEXT statement can be used to close nested loops by listing the
counter variables (but make sure not to type the variables out of
order). For example, delete line 920 and change 930 to:

NEXT J, 1

NOTE: In nested loops, if the variable(s) in the NEXT statement is
omitted, the NEXT statement matches the most recent FOR
statement.

2-99

FRE

Function
FRE(dummy number) or (dummy string)

Returns the number of bytes in memory not being used by BASIC.

Because of the ways BASIC handles memory, the best way to ensure
accurate results from FRE and MEM is to use them at the beginning
of your program before it performs any string assignments.

The values returned by FRE and MEM can be deceiving after string
assignments. For example, type these lines:

NEW (ENTER)
PRINT FREC@) (ENTER

Notice the number of bytes returned by FRE. Now, assign a string to
A$, by typing:

A$="THIS 1S A STRING THAT WILL REQUIRE MEMORY"
(ENTER)
PRINT FRE (@) (ENTER

You can see that some of the bytes are no longer free. They were
used to create A$ and to store its contents.

Now, assign fewer bytes to AS$, by typing:
A$="SHORT STRING" (ENTER
Check the free space again:
PRINT FRECG) (ENTER

Even though fewer bytes are now assigned to A3, the amount of free
memory does not increase; it decreases. This is because BASIC
discards the section of memory that contains the original string and
allocates a new section to contain the new string.

If BASIC continues to perform string assignments indefinitely, it
eventually runs out of free space. If you use the FRE function, it
indicates this. But, in fact, there is memory left—namely, those
sections discarded earlier, which contain strings no longer assigned to
variables. When you try to assign another string, BASIC scans
memory, finds these sections, and adds all of them back into free
memory. This is called garbage collection. It occurs automatically
whenever you execute RUN, NEW, LOAD, or CLEAR, as well as
whenever all memory appears to be used.

2-100

GET

If you use FRE immediately after a garbage collection, it again returns
the true amount of memory left.

NOTE: The error message “Out of string space” appears if BASIC is
unable to find enough room for a string, even after a garbage
collection.

Examples
PRINT FRE("44'")

prints the amount of memory left.
PRINT FRE(44)

prints the amount of memory left.

Statement
GET buffer [,record]

Gets a record from a direct-access disk file and places it in a buffer.
Before using GET, you must OPEN the file and assign it a buffer.

When BASIC encounters GET, it reads the record number from the
file and places it into the buffer. The actual number of bytes read
equals the record length set when the file is OPENed.

If record is omitted, BASIC gets the next record (after the last GET)
and reads it into the buffer.

Examples
GET 1

gets the next record into buffer 1.
GET 1, 25

gets record 25 into buffer 1.

2-101

GOSUB

Statement
GOSUB line

Goes to a subroutine, beginning at /ine.

You can call subroutine as many times as you want. When the
computer encounters RETURN in the subroutine, it returns control to
the statement which follows GOSUB.

GOSUB is similar to GOTO in that it may be preceded by a test
statement. Every subroutine must end with a RETURN.

Example

GOSUB 1686
branches control to the subroutine at 1000.
Sample Program

26@ GUSUB 288

27¢ PRINT "BACK FROM SUBROUTINE": END
288 PRINT "EXECUTING THE SUBROUTINEY
290 RETURN

transfers control from line 260 to the subroutine beginning at line 280,
Line 290 instructs the computer to return to the statement immediately
following GOSUB.

2-102

GOTO

Statement
GOTO line

Goes to the specified fine.

When used alone, GOTO Jine results in an unconditional (automatic)
branch. However, test statements may precede the GOTO to effect a
conditional branch.

You can use GOTO in the command mode as an alternative to RUN.
This lets you pass values assigned in the command mode to variables
in the execute mode.

Example

GOTO 100
transfers control automatically to line 100.
Sample Program

18 READ R

20 1F R = 13 THEN END
30 PRINT "R=";3R

40 A=3.14xR"2

50 PRINT "“AREA ='";A
62 GOTO 1@

78 DATA 5,7,12, 13
RUN

Line 10 reads each of the data items in line 60; line 50 returns
program control to line 10. This enables BASIC to calculate the area
for each of the data items, until it reaches item 13.

NOTE: To enter the ~ symbol, press CLEAR) .

2-103

HEXS$

Function

HEX$(number)

Calculates the hexadecimal value of number.

HEXS$ returns a string which represents the hexadecimal value of the
argument. The value returned is like any other string: it cannot be
used in a numeric expression. That is, you cannot add hex strings.
You can concatenate them, though.

Examples
PRINT HEX$(38), HEX$(S8), HEX$(98)
prints the following strings:
3z 54
Y$ = HEX$(X/16)

Y$ is the hexadecimal string representing the integer quotient X/16.

IF...THEN...ELSE

Statement
IF expression THEN statement(s) or line
[ELSE statement(s) or line]

Tests a conditional expression and makes a decision regarding
program flow.

If expression is true, control proceeds to the THEN statement or line. if
not, control jumps to the matching ELSE statement, line, or down to
the next program line.

2-104

Examples
IF X > 127 THEN PRINT "“OUT OF RANGE™ : END

passes control to PRINT, then to END if X is greater than 127. If X is
not greater than 127, control jumps down to the next line in the
program, skipping the PRINT and END statements.

If A ¢ B THEN PRINT "A < B" ELSE PRINT "B <= A"

tests the first expression, if true, prints “ 4 < B, Otherwise, the
program jumps to the ELSE statement and prints “B < = A",

IF X > B AND Y <> B THEN Y = X + 1880

assigns the value X + 180 to Y if both expressions are true.
Otherwise, control passes directly to the next program line, skipping
the THEN clause.

IF A$ = "YES" THEN 210 ELSE IF A$ = 'NO'" THEN 4080
ELSE 378

branches to line 210 if A$ is YES. If not, the program skips over to
the first ELSE, which introduces a new test. If A$ is NO, then the
program branches to line 400. If A$ is any value besides NO or YES,
the program branches to line 370.

Sample Program

IF THEN ELSE statements may be nested. However, you must take
care to match up the IFs and ELSEs. (If the statement does not
contain the same number of ELSE’s and IF’s, each ELSE is matched
with the closest unmatched IF.)

18048 INPUT “ENTER TWO NUMBERS"; A, B

1858 IF A <= B THEN IF A < B THEN PRINT A;
ELSE PRINT *“NEITHER"; ELSE PRINT Bj;

1868 PRINT IS SMALLER THAN THE OTHER"

This program prints the relationship between the two numbers
entered.

2-105

INKEY$

INP

Function
INKEYS

Returns a keyboard character.

Returns a one-character string from the keyboard without having to
press (ENTER). If no key is pressed, a null string (length zero) is
returned. Characters typed to INKEY$ are not echoed to the display.

INKEYS is invariably put inside some sort of loop. Otherwise a
program execution would pass through the line containing INKEY$
before a key could be pressed.

Example

18 A$ = INKEYS$
20 IF A$ = "" THEN 10

This causes the program to wait for a key to be pressed.

Function
INP(port)

Returns the byte read from a port.
INP is the complementary function of the OUT statement.

Port may be any integer from 0 to 255. For information on assigned
ports, see the Model 4/4P Technical Reference Manual.

Example
168 A=INP(42)

2-106

INPUT

Statement
INPUT [prompt string;] variable1, variable2, . ..

Inputs data from the keyboard into one or more variables.

When BASIC encounters this statement, it stops execution and
displays a question mark. This means that the program is waiting for
you to type data.

INPUT may specify a list of string or numeric variables, indicating
string or numeric data items to be input. For instance, INPUT X$, X1,
Z$, Z1 calls for you to input a string literal, a number, another string
literal, and another number, in that order.

The number of data items you supply must be the same as the
number of variables specified. You must separate data items by
commas.

Responding to INPUT with too many items, or with the wrong type of
value (including numeric type), causes BASIC to print the message
“?Redo from start” | No values are assigned until you provide an
acceptable response.

If a prompt string is included, BASIC prints it, followed by a question
mark. This helps the person inputting the data to enter it correctly. If
instead of a semicolon, you type a comma after prompt string, BASIC
suppresses the question mark when printing the prompt. Prompt string
must be enclosed in quotes. It must be typed immediately after
INPUT.

Examples
INPUT Y%

when BASIC reaches this line, you must type any number and press
ENTER) before the program will continue.

INPUT SENTENCES

when BASIC reaches this line, you must type in a string. The string
wouldn’t have to be enclosed in quotation marks unless it contained a
comma, a colon, or a leading blank.

2-107

INPUT "ENTER YOUR NAME AND AGE (NAME, AGED"™;
N$, A

would print a message on the screen which would help the person at
the keyboard to enter the right kind of data.

Sample Program

50 INPUT "HOW MUCH DO YOU WEIGH"; X
68 PRINT "ON MARS YOU WOULD WEIGH ABOUT™
CINTCX * .38) "POUNDS."

INPUT#

Statement
‘INPUT #buffer, variable, . . .

inputs data from a sequential disk file and stores it in a program
variable.

Buffer is the number used when the file was OPENed for input.

Variable contains the variable name(s) that will be assigned to the
item(s) in the file.

With INPUT#, data is input sequentially. That is, when the file is
OPENed, a pointer is set to the beginning of the file. The pointer
advances each time data is input. To start reading from the beginning
of the file again, you must close the file buffer and re-OPEN it.

INPUT# doesn’t care how the data was placed on the disk —
whether a single PRINT# statement put it there, or whether it required
ten different PRINT# statements. What matters to INPUT# is the
position of the terminating characters and the EOF marker.

When inputting data into a variable, BASIC ignores leading bianks.
When the first non-blank character is encountered, BASIC assumes it
has encountered the beginning of the data item.

The data item ends when a terminating character is encountered or
when a terminating condition occurs. The terminating characters vary,
depending on whether BASIC is inputting to a numeric or string
variabie.

2-108

INPUT$S

Numeric values: BASIC begins input at the first character which is
neither a space nor a carriage return. It ends input when it encounters
a space, carriage return, or a comma.

String values: BASIC begins input with the first character which is
neither a space nor carriage return. It ends input when it encounters a
carriage return or comma. One exception to this rule: If the first
character is a quotation mark("), the string will consist of all
characters between the first quotation mark and the second. Thus, a
quoted string may not contain a quotaton mark as a character.

If the end-of-file is reached when a numeric or string item is being
INPUT, the item is terminated.

Examples:
INPUT #1,A,B

sequentially inputs two numeric data items from disk and places them
in A and B. Buffer #1 is used.

INPUT #4,A$,B$,C$

sequentially inputs three string data items from disk and places them
in A$, B$, and C$. Buffer #4 is used.

Statement
INPUTS$(number [buffer])

Inputs a string of characters from either the keyboard or a sequential
disk file.

Number is the number of characters to be input. It must be a value in
the range 1 to 255. Buffer is a buffer which accesses a sequential
input file.

INPUTS(number) inputs a string of characters from the keyboard.
When the program reaches this line, it stops until you (or any
operator) type number characters. (You don't need to press (ENTER) to
signify end-of-line.) The character(s) you type are not displayed on the
screen. Any character, except BREAK), is accepted for input. No
characters are echoed.

2-109

INSTR

INPUTS$(number, buffer) inputs a string from a sequential disk file.
Buffer is the buffer associated with that disk file.

Examples
A$ = INPUTS$(S)

assigns a string of five keyboard characters to A$. Program execution
is halted until the operator types five characters.

As = INPUTS$C(11,3)

assigns a string of 11 characters to A$. The characters are read from
the disk file associated with buffer 3.

Sample Programs

This program shows how you could use INPUTS$ to have an operator
input a password for accessing a protected file. By using INPUTS, the
operator can type in the password without anyone seeing it on the
video display. (To see the full file specification, run the program, then
type PRINT F$.)

116 LINE INPUT “TYPE IN THE FILESPEC/EXT"; F$

120 PRINT “TYPE IN THE PASSWORD -- MUST TYPE
8 CHARACTERS: ',

138 P$ = INPUTS$(8)

148 F$ = F$ » " x Pg

In the program below, line 100 OPENs a sequential input file (which
we assume has been previously created). Line 200 retrieves a string
of 70 characters from the file and stores them in T$. Line 300
CLOSEs the file.

186 OPEN *I', 2, “TEST/DAT"
288 T$ = INPUTS$(78,2)
388 CLOSE

Function
INSTR(linteger,] string1, sitring2)

Searches for the first occurrence of string2 in string1, and returns the
position at which the match is found.

Integer specifies a position in string?. If used it must be a value in the
range 1 to 255.

2-110

This function lets you search through a string to see if it contains
another string. If it does, INSTR returns the starting position of the
substring in the target string; otherwise, it returns zero. Note that the
entire substring must be contained in the search string, or zero is
returned.

Optional integer sets the position for starting the search. If omitted,
INSTR starts searching at the first character in string?.

Examples
In these examples, A$ = “"LINCOLN":
INSTRCAS, “INC'™)
returns a value of 2.
INSTRCAS, "12')
returns a zero.
INSTRCAS, “LINCOLNABRAHAM")
returns a zero. For a slightly different use of INSTR, look at:
INSTR(3, *1232123", "12')
which returns 5.
Sample Program

The program below uses INSTR to search through the addresses
contained in the program’s DATA lines. It counts the number of
addresses with a specified county zip code (761—) and returns that
number. The zip code is preceded by an asterisk to distinguish it from
the other numeric data found in the address.

360 RESTORE

370 COUNTER = @

390 READ ADDRESSS$

395 1f ADDRESS$ = “SEND'" THEN 419

488 1f INSTRCADDRESSS, "x761") <> & THEN COUNTER =
COUNTER + 1 ELSE 399

495 GOTO 398

4190 PRINT "“NUMBER 0OF TARRANT COUNTY, TX
ADDRESSES 15" COUNTER: END

420 DATA "5950 GORHAM DRIVE, BURLESON, TX *76148"

438 DATA "71 FIRSTFIELD ROAD, GAITHERSBURG, MD
*20760"

440 DATA 1000 TWO TANDY CENTER, FORT WORTH,
TX *x76102"

450 DATA '16833 SOUTH CENTRAL EXPRESSWAY,
RICHARDSON, TX »75888"

469 DATA “SEND"

2-111

INT

KILL

Function
INT(number)

Converts number to integer value.

This function returns the largest integer which is not greater than the
number. Number may be an expression.

The result has the same precision as the argument except for the
fractional portion. Number is not limited to the range —32768 to
32767.

Examples

PRINT INT(7%9.89)
prints 79,

PRINT INTC(-12.11)
prints — 13,

Statement
KILL “filespec”

“Kills” (deletes) filespec from disk.

You may KILL any type of disk file. However, if the file is currently
OPEN, a “File already open” error occurs. You must CLOSE the file
before deleting it.

2-112

LEFTS

Example
KILL "“FILE/BAS"

deletes this file from the first drive which contains it.
KILL “DATA:2"

deletes this file from Drive 2 only. BASIC does not check the other
drives.

Function
LEFT$(string,integer)

Returns the leftmost integer characters of string.

If integer is equal to or greater than LEN (string), the entire string is
returned.

Examples:

PRINT LEFT$("BATTLESHIPS'"™, &)
prints BATTLE.

PRINT LEFT$("BIG FIERCE DOG'"™, 26)

since BiG FIERCE DOG is less than 20 characters long, the whole
phrase is printed.

Sample Program

748 A$ = "TIMOTHY"
758 B$ = LEFT$CAS, 3)
768 PRINT Bs$; "--THAT’S SHORT FOR "; AS

When this is run, BASIC prints:

TiM--~THAT S SHORT FOR

Line 750 gets the three leftmost characters of A$ and stores them in
B$. Line 760 prints these three characters, a string, and the original
contents of AS.

2-113

LEN

LET

Function
LEN(string)

Returns the number of characters in string.
Examples
X = LENCSENTENCES)
gets the length of SENTENCES and stores it in X.
PRINT LENC"CAMBRIDGE™) + LENC"BERKELEY'™)
prints 17.

Statement
[LET) variable = expression

Assigns the value of expression to variable.

BASIC doesn't require assignment statements to begin with LET, but
you might want to use LET to be compatible with versions of BASIC
that do require it.

Examples
LET A$ = ™A ROSE IS A ROSE"™
LET BT = 1.23
LET X = X - 21

In each case, the variable on the left side of the equals sign is
assigned the value of the constant or expression on the right side.

Sample Program

558 P = 1@861: PRINT "p =" P
S8 LET P = 2081: PRINT "NOW P = "P

2-114

LINE INPUT

Statement
LINE INPUT[prompt string;] string variable

Inputs an entire line (up to 254 characters) from the keyboard.

LINE INPUT is a convenient way to input string data without having to
worry about accidental entry of delimiters (commas, guotation marks,
etc.).

LINE INPUT (the space is not optional} is similar to INPUT, except:

— The computer does not disptay a question mark when waiting for
input.

— Each LINE INPUT statement can assign a value to only one
variable.

— Commas and quotes can be used as part of the string input.

— Leading blanks are not ignored — they become part of variable.

Some situations require that you input commas, quotes, and leading
blanks as part of the data. LINE INPUT serves well in such cases.

Examples:
LINE INPUT A$
inputs A$ without displaying any prompt.
LINE INPUT "LAST NAME, FIRST NAME? "; N$

displays a prompt message and inputs data. Commas do not
terminate the input string, as they would in an INPUT statement,

You may abort a LINE INPUT statement by pressing (BREAK). BASIC
returns to command level and displays Ready. Typing CONT resumes
execution at LINE INPUT.

2-115

LINE INPUT#

Statement
LINE INPUT #buffer, variable

Inputs an entire line of data from a sequential disk file to a string
variable.

Buffer is the number under which the file was OPENed.

This statement is useful when you want to read an ASCH-format
BASIC program file as data, or when you want to read in data without
following the usual restrictions regarding leading characters and
terminators.

LINE INPUT# reads everything from the first character up to:

— the end-of-file
— the 255th data character

Other characters encountered — quotes, commas, leading blanks —
are included in the string.

Example
If the data on disk looks like this:

18 CLEAR 500
2@ OPEN ™I'™, 1, "PROG"

then the statement
LINE INPUT #1, AS$

could be used repetitively to read each program line, one at a time.

2-116

LIST

Statement
LIST [startline}-[endline]

Lists a program in memory to the display.

Startline specifies the first line to be listed. If omitted, BASIC starts
with the first line in your program.

Endline specifies the last line to be listed. If omitted, BASIC ends with
the last line in your program.

You can substitute period (.) for either startline or endline to signify
current line number.

Examples
LisT

displays the entire program. To stop the automatic scrolling, press
SHIFD(@). This freezes the display. Press any key to continue the
listing.

LIST 58

displays line 50.
LIST 58-85

displays lines in the range 50-85.
LIST .-

displays the program line that has just been entered or edited, and all
higher-numbered lines.

LIST ~227
displays all lines up to and including 227.

2-117

LLIST

Statement
LLIST [startline}-[endline]

Lists program lines in memory to the printer.

The only difference between LLIST and LIST is that LLIST lists the
lines on printer. See LIST.

Examples
LLIST

lists the entire program to the printer. To stop this process, press
SHIFD(@). This causes a temporary halt in the computer’s output to
the printer. Press any key to continue printing.

LLIST 68-98
prints lines in the range 68-90.

2-118

LOAD

Statement
LOAD “filespec” [,R]

Loads filespec, a BASIC program, into memory.

The R option tells BASIC to run the program. (LOAD with the R option
is equivalent to the command RUN filespec, R.)

LOAD without the R option wipes out any resident BASIC program,
clears all variables, and CLOSES all OPEN files. LOAD with the R
option leaves all OPEN files open and runs the program automatically.

You can use either of these commands inside programs to aliow
program chaining (one program calling another).

If you attempt to LOAD a non-BASIC file, a "Direct state
error will occur.

Example
LOAD “PROG1/BAS:2%

loads PROG1/BAS from Drive 2. BASIC then returns to the command
mode.

LOAD ™“™PROG1/BAS™

loads PROG1/BAS. Since no drive is specified, BASIC begins
searching for it in Drive 0.

2-119

LOC

Function
LOC(buffer)

Returns the current record number.
Buffer is the buffer under which the file was OPENed.

LOC is used to determine the current record number, that is, the
number of the last record processed since the file was OPENed. It
returns the record number accessed by the last GET or PUT
statement.

LOC is also valid for sequential files. It returns the number of sectors
(256-byte biock) read from or written to the file since the file was
OPENed.

Example
IF LOCC1)>55 THEN END

if the current record number is greater than 55, ends program
execution.

Sample Program

1319 A$ = “WILLIAM WILSON"

1328 GET 1

1330 1F N$ = A$ THEN PRINT “FOUND IN RECORD"
LBCC1): CLOSE: END

1342 GOTC 1328

This is a portion of a program. Elsewhere the file has been OPENed
and FIELDed. N§ is a field variable. If N$ matches A$, the record
number in which it was found is printed.

2-120

LOF

Function
LOF(buffer)

Returns the end-of-file record number,
Buffer is the number under which a file was OPENed.

This function tells you the number of the last record in a direct-access
file.

Example

Y = LOF(S)
assigns the last record number to variable Y.
Sample Programs

During direct access to a pre-existing file, you often need a way to
know when you've read the last valid record. LOF provides a way.

1540 OPEN "R', 1, "UNKNOWN/TXT™, 255
1558 FIELD 1, 255 AS A$

1568 FOR I% = 1 TO LOF(1) ‘LOFC1) = HIGHEST
1570 GET 1, 1% ‘RECORD NUM., TO BE
1588 PRINT As “ACCESSED

1588 NEXT 1%

1608 CLOSE

If you attempt to GET record numbers beyond the end-of-file, BASIC
gives you an error.

When you want to add to the end of a file, LOF tells you where to
start adding:

1600 1% = LOFC1) + 1 ‘HIGHEST EXISTING RECORD
1618 PUT 1, 1% ‘ADD NEXT RECORD

24121

LOG

Function
LOG(number)

Computes the natural logarithm of number.

This is the inverse of the EXP function. The result is always in single
precision.

Examples
PRINT LDG(3.14159)
prints the value 1.14473
Z = 18 % LOG(Ps/P1)
performs the indicated calculation and assigns the value to Z.
Sample Program

This program demonstrates the use of LOG. It utilizes a formula taken
from space communications research.

54¢ INPUT “DISTANCE SIGNAL MUST TRAVEL
(MILES)"; D

558 INPUT "SIGNAL FREGQUENCY (GIGAHERTZI"; F

568 L = 96.58 + (28 * LOGC(F)I) + (28 * LOGCD))

578 PRINT "SIGNAL STRENGTH LOSS IN FREE SPACE
IS L “DECIBELS."

2-122

LPOS

Function
LPOS(number)

Returns the logical position of the line printer's print head within the
line printer's buffer.

Number is a dummy argument.

This function does not necessarily give the physical position of the
print head.

Example
180 IF LPOSC(X)>68 THEN LPRINT

LPRINT, LPRINT USING

Statement
LPRINT data, . ..

LPRINT USING format; data, . . .

Prints data on the printer.
See PRINT and PRINT USING for more information.
Examples
LPRINT (A » 2)/3
prints the value of expression (A = 2)/3 on the printer.
LPRINT TAB(S5@) "TABBED 5§

moves the line printer carriage to TAB position 50 and prints
TABBED 50", (Refer to the TAB function).

LPRINT USING "##ses 2"y 2.17

sends the formatted value bbbh2.2 to the line printer.

2-123

LPRINT TAB

LSET

Statement
LPRINT TAB(humber)

Works the same as PRINT TAB, except that it is for the printer.
Number can be in the range 1 to 255.

Statement
LSET field name = data

Sets data in a direct-access buffer field name.
Before using LSET, you must have used FIELD to set up buffer fields.

See also the chapter on "Disk Files”, OPEN, CLOSE, FIELD, GET,
PUT, and RSET.

Example

Suppose NM$ and AD$ have been defined as field names for a direct
access file buffer. NM$ has a length of 18 characters; AD$ has a
length of 25 characters. The statements

LSET NM$ = "JIM CRICKET, JR."
LSET AD$ = "2@@¢ EAST PECAN ST."

set the data in the buffer as follows:
JIMBCRICKET, JR.BBYG 2O8B0BEASTYUPECANYBST . byl %%

Notice that filler blanks were placed to the right of the data strings in
both cases. If we had used RSET statements instead of LSET, the
filler spaces would have been placed to the left. This is the only
difference between LSET and RSET.

If a string item is too large to fit in the specified buffer field, it is
always truncated on the right. That is, the extra characters on the
right are ignored. This applies to both LSET and RSET.

2-124

MEM

Function
MEM

Returns the amount of memory.

MEM performs the same function as FRE. It returns the number of
unused and unprotected bytes in memory.

This function may be used in the immediate mode to see how much
space a resident program occupies. It may also be used inside a
program to avert “Out of memory” errors. MEM requires no argument.

See the FRE function for more information.
Example
PRINT MEM

Enter this command in the immediate mode (no line number is
needed). The number returned indicates the amount of leftover
memory; that is, memory not being used to store programs, variables,
strings, the stack, or not reserved for object files.

Sample Program

1618 IF MEM < 88 THEN 1638
1628 DIM AC15)
1630 REM PROGRAM CONTINUES HERE

If fewer than 80 bytes of memory are left, control switches to another
part of the program. Otherwise, an array of 16 elements is created.

2-125

MERGE

Statement
MERGE “filespec”

Loads filespec, a BASIC program, and merges it with the program
currently in memory.

Filespec specifies a BASIC file in ASCI! format (a program saved with
the A option). if filespec is a constant, it must be enclosed in quotes.

Program lines in the disk program are inserted into the resident
program in sequential order. For example, suppose that three of the
lines from the disk program are numbered 75, 85 and 90, and three of
the {ines from the current program are numbered 70, 80, and 90.
When MERGE is used on the two programs, this portion of the new
program will be numbered 70, 75, 80, 85, 90.

if line numbers on the disk program coincide with fine numbers in the
resident program, the disk program’s lines replace the resident
program’s lines.

MERGE closes all files and clears all variables. Upon completion,
BASIC returns to the command mode.

Example

Suppose you have a BASIC program on disk, PROG2/TXT (saved in
ASCIl), which you want to merge with the program you've been
working on in memory. Then we use:

MERGE "PROG2/TXT"
merges the two programs.
Sample Programs

MERGE provides a convenient means of putting program modules
together. For example, an often-used set of BASIC subroutines can
be tacked onto a variety of programs with this command.

Suppose the following program is in memory:

2-126

80 REM MAIN PROGRAM

99 REM LINE NUMBER RESERVED FOR SUBROUTINE HOOK
1900 REM PROGRAM LINE

118 REM PROGRAM LINE

128 REM PROGRAM LINE

138 END

And suppose the following subroutine, SUB/TXT, is stored on disk in
ASCII format:

99 GOSUB 1008 SUBROUTINE HOOK

1008 REM BEGINNING OF SUBROUTINE
1818 REM SUBROUTINE LINE
1228 REM SUBROUTINE LINE
1238 REM SUBROUTINE LINE

1049 RETURN
You can MERGE the subroutine with the main program with:
MERGE “SUB/TXT"

and the new program in memory is:

89 REM MAIN PROGRAM

20 GOSUB 1089 SUBROUTINE HOOK

102 REM PROGRAM LINE

112 REM PROGRAM LINE

128 REM PROGRAM LINE

139 END

1009 REM BEGINNING OF SUBROUTINE
1019 REM SUBROUTINE LINE

1029 REM SUBROUTINE LINE

1039 REM SUBROUTINE LINE

1049 RETURN

2-127

MID$

Statement
MID$(oldstring, position [length]) = replacement string

Replaces a portion of an oldstring with replacement string.
Oldstring is the variable name of the string you want to change.

Position is a number specifying the position of the first character to be
changed.

Length is a number specifying the number of characters to be
replaced.

Replacement string is the string to replace a portion of oldstring.

The length of the resultant string is atways the same as the original
string. If replacement string is shorter than fength, the entire
replacement string is used.

Examples:
A$ = "LINCOLN"
MID$CAS, 3, 4) = "12345": PRINT A$

returns LI1234N.

MID$CAS, S5) = "B1": PRINT As
returns LINCO1N.
MID$CAS, 1, 3) = "sxx": PRINT A$

returns ##+COLN.

2-128

MID$

Function
MIDS$(string, integer [,number})

Returns a substring of string, beginning at position integer.

If integer is greater than the number of characters in string, MID$
returns a null string.

Number is the number of characters in the substring. If omitted,
BASIC returns all right most characters, beginning with the character
at position integer.

Examples
If A$ = "WEATHERFORD” then
PRINT MIDCAS, 3, 2)
prints AT.
F$ = MID$(AS, 3D
puts ATHERFORD into F$.
Sample Program

2¢@ INPUT "AREA CODE AND NUMBER
CNNN=NNN-NNNN)'"s PH$

218 EX$ = MID$(PH$, 5, 3)

228 PRINT "“NUMBER IS IN THE " EX$ ' EXCHANGE."

The first three digits of a local phone number are sometimes called
the exchange of the number. This program looks at a complete phone
number (area code, exchange, last four digits) and picks out the
exchange of that number.

2-129

MKD$, MKI$, MKS$

Function
MKI$(integer expression)
MKSS(single-precision expression)
MKDS$(double-precision expression)

Convert numeric values to string values.

Any numeric value that is placed in a direct file buffer with an LSET or
RSET statement must be converted to a string.

These three functions are the inverse of CVD, CVI, and CVS. The
byte values which make up the number are not changed; only one
byte, the internal data-type specifier, is changed, so that numeric data
can be placed in a string variable.

MKDS$ returns an eight-byte string; MKI$ returns a two-byte string; and
MKSS$ returns a four-byte string.

Example
LSET AVGS = MKS$(P.123)
Sample Program

135¢ OPEN "D, 1, “TEST/DAT"™, 14

1360 FIELD 1, 2 AS I1%, 4 AS I2%, 8 AS I3%
1370 LSET I1$ = MKI$(3008)

1380 LSET 12% = MKD$(30600.1)

1390 LSET 13$ = MKD$(3000.000061)

14608 PUT 1, 1

1418 CLOSE 1

For a program that retrieves the data from TEST/DAT, see
CVD/CVI/CVS.

2-130

NAME

NEW

Statement
NAME old filespec AS new filespec

Renames old filespec as new filespec.

With this statement, the data in the file is left unchanged. The new
filespec may not contain a password or drive specification.

Example

NAME “FILE™ AS "FILE/OLD"
renames FILE as FILE/OLD.

NAME B$ AS A%

renames the file specified in B$ to the name specified in A$. Both A$
and B$ are unchanged.

Statement
NEW

Deletes the program currently in memory and clears all variables.

NEW displays a new (clear) screen and returns you to the command
mode.

Example
NEW

2-131

OCT$

Function
OCT$(number)

Computes the octal value of number.

OCTS$ returns a string which represents the octal value of number.
The value returned is like any other string — it cannot be used in a
numeric expression.

Examples
PRINT OCT$(38), 0OCT$(58), 0OCT$(39)
prints the following strings:

Y$ = 0CT$(X/84)

Y$ is a string representation of the integer quotient X/84 to base 8.

ON ERROR GOTO

Statement
ON ERROR GOTO line

Transfers control to line if an error occurs.

This lets your program “recover” from an error and continue
execution. (Normally, you have a particular type of error in mind when
you use the ON ERROR GOTO statement).

ON ERROR GOTO has no effect unless it is executed before the error
occurs. To disable it, execute an ON ERROR GOTO 0. If you use ON
ERROR GOTO 0 inside an error-trapping routine, BASIC stops
execution and prints an error message.

2-132

The error-handling routine must be terminated by a RESUME
statement. See RESUME.

Example
18 ON ERROR GOTO 1508

branches program control to line 1500 if an error occurs anywhere
after line 10.

For the use of ON ERROR GQTO in a program, see the sample
program for ERROR.

ON...GOSUB

Statement
ON expression GOSUB line, . ..

Calls the subroutine at the /ine based on the value of expression.

Expression is a numeric expression between @ and 255, inclusive. For
example, if expression’s value is three, the third line number in the list
is the destination of the branch.

If expression’s value is zero or greater than the number of items in the
list (but less than or equal to 255), BASIC continues with the next
executable statement. If expression is negative or greater than 255,
an “llegal function call” error occurs.

Example
ON Y GOSUB 10008, 2060, 3000

If'Y = 1, the subroutine beginning at 1000 is called. If Y = 2, the
subroutine at 2000 is called. If Y = 3, the subroutine at 3000 is
called.

Sample Program

43¢ INPUT “CHOOSE 1, 2, OR 3" ; 1
440 ON 1 GOSUB 500, 00, 700

458 END

508 PRINT "SUBROUTINE #1": RETURN
608 PRINT "SUBROUTINE #2": RETURN
780 PRINT "SUBROUTINE #3": RETURN

2-133

ON...GOTO

Statement
ON expression GOTO line, ...

Goes to the line specified by the value of expression.
Expression is a numeric expression between 0 and 255.

This statement is very simitar to ON .. . GOSUB. However, instead of
branching to a subroutine, it branches control to another program line.

The value of expression determines to which line the program will
branch. For example, if the value is four, the fourth line number in the
list is the destination of the branch. If there is no fourth line number,
control passes 1o the next statement in the program.

If the value of expression is negative or greater than 255, an "lliega
inction cai” error occurs. Any amount of line numbers may be
mcluded after GOTO.

Example

ON MI GOTOD 158, 168, 178, 158, 188

tells BASIC to "Evaluate MI:

if the value of Mi equals one then go to line 150;

if it equals two, then go to 160;

if it equals three, then go to 170;

if it equals four, then go to 150;

if it equals five, then go to 180;

if the value of Mi doesn't equal any of the numbers one through five,
advance to the next statement in the program’.

2-134

OPEN

Statement
OPEN mode, buffer, “filespec” [,record length)

Opens a disk file.

Mode is a string expression whose first character is one of the
following:

O for sequential output mode

| for sequential input mode

E for sequential output and extend mode
D or R for direct input/output mode

Buffer is an integer between 1 and 15. It specifies which area in
memory you will use to access the file.

Filespec specifies a TRSDOS file.

If Mode =0, the filespec can also be a standard TRSDOS devspec,
such as *PRORxCL.

Record length is an integer which sets the record length for
direct-access files. The default is 256 bytes.

Once you have assigned a buffer to a file with the OPEN statement,
that buffer cannot be used in another OPEN statement. You must first
CLOSE the first file.

Examples
QOPEN "D, 2, "DATA/BAS.SPECIAL"

opens the file DATA/BAS in direct-access mode, with the password
SPECIAL. Buffer 2 is used. If DATA/BAS does not exist, it is created
on the first non write-protected drive. The record length is 256 bytes.

OPEN "D", §, "“TEXT/BAS", 64

opens the file TEXT/BAS for direct access. Buffer 5 is used. The
record length is 64. If this length does not match the record length
assigned to TEXT/BAS when the file was originally OPENed, an error
occurs.

2-135

OPTION BASE

OPEN ™0™, 7, "INV/CONT"

opens the sequential file “INV/CONT" for output. if “INV/CONT" does
not exist, it is created. Information is written to the file sequentially,
starting at the first byte. if the file does exist, any new information is
written over the existing information; the file's previous contents are
lost.

OPEN ™E"™, 1, "“LIST/EMP™

opens the file LIST/EMP and extends it by appending new data to the
end of the file. If "LIST/EMP" does not exist, OPEN “E" works the
same way as OPEN "O".

OPEN ™I', 8, "MGT"

opens the sequential file "MGT" for sequential input. This enables you
to retrieve information from the file (using INPUT# or LINE INPUT#).
If “"MGT" does not exist, a “File not found” error occurs.

See the chapter on "Disk Files" for programming information.

Statement
OPTION BASE n

Sets n1 as the minimum value for an array subscript.
N may be 1 or 0. The default is 0.

If you use this statement in a program, it must precede the DIM
statement.

if the statement
OPTION BASE 1

is executed, the lowest value an array subscript may have is one.

2-136

OuT

PEEK

Statement
OUT port, data byte

Sends a data byte to a machine output port.

Port is an integer between 0 and 255. Data byte is also an integer
between 0 to 255.

A port is an input/output location in memory. For information on
assigned ports, see the Model 4/4P Technical Reference Manual.

Example
OUT 32,188
sends 100 to port 32.

Function
PEEK(memory location)

Returns a byte from memory location.
The memory location must be in the range —32768 to 65535.

The value returned is an integer between 0 and 255. (For the
interpretation of a negative value of memory focation, see the
statement VARPTR).

PEEK is the complementary function of the statement POKE.
Example

A = PEEKC(&H5ARD)

2-137

POKE

POS

Statement
POKE memory location, data byte

Writes data byte into memory location.

Both memory location and data byte must be integers. Memory
focation must be in the range — 32768 to 65535.

POKE is the complementary statement of PEEK. The argument to
PEEK is a memory location from which a byte is to be read.

PEEK and POKE are useful for storing data efficiently, loading
assembly-language subroutines, and passing arguments (or results) to
and from assembly-language subroutines.

For more information, see the Mode/ 4/4P Technical Reference
Manual.

Example
19 POKE &HSAQ@, sHFF

Function
POS(number)

Returns the position of the cursor.
Number is a dummy argument.

POS returns a number from 1 to 80 indicating the current
cursor-column position on the display.

Example
PRINT TAB(48) POS()

2-138

PRINT

prints 40. The PRINT TAB statement moves the cursor to position 40,
therefore, POS(0) returns the value 40. (However, since a blank is
inserted before the 4" to accommodate the sign, the 4" is actually at
position 41).

Sample Program

158 CLS

160 A$ = INKEYS$

178 IF A$ = "' THEN 160

189 1F POSCX) >78 AND A$=CHR$(32) THEN
A$=CHRS$(13)

198 PRINT AS$;

288 LPRINT AS$;

219 GOTD 169

This program lets you use your printer as a typewriter (except that
you cannot correct mistakes). Your computer keyboard is the
typewriter keyboard. The program will keep watch at the end of a line
so that no word is divided between two lines.

Statement
PRINT data, . ..

Prints numeric or string data on the display.
BASIC prints the values of the data items you list in this statement.

You may separate the data items by commas or semicolons. If you
use commas, the cursor automatically advances to the next tab
position before printing the next item. (BASIC divides each line into
five tab positions, at columns @, 16, 32, 48, and 64). If you use
semicolons, it prints the items without any spaces between them.

BASIC prints positive numbers with a leading blank. It prints all
numbers with a trailing blank. This is done even if the numbers are
separated by a semicolon.

A semicolon or comma at the end of a line causes the next PRINT
statement to begin printing where the last one left off. If no trailing
punctuation is used with PRINT, the cursor drops down to the
beginning of the next line.

2-139

Single-precision numbers with six or fewer digits that can be
accurately represented in ordinary (rather than exponential) format,
are printed in ordinary format. For example, 1E-7 is printed as
(000001, 1E-8 is printed as 1E-08.

Double-precision numbers with 16 or fewer digits that can be
accurately represented in ordinary format, are printed using the
ordinary format. For example, 1D-15 is printed as .000000000000001;
1D-16 is printed as 10-186.

To insert strings into this statement, surround them with quotation
marks.

Examples

PRINT "DO"; "NOT"; "LEAVE"; "SPACES";
“BETWEEN"; "“THESE™; "WORDS"

prints on the display:
DONOTLEAVESPACESBETWEENTHESEWORDS

Sample Program

60 INPUT "ENTER THIS YEAR"; Y

78 INPUT "ENTER YODUR AGE";A

80 INPUT "ENTER A YEAR IN THE FUTURE";F

98 N = A + (F - Y)

100 PRINT "IN THE YEAR"F"YOU WILL BE"N"YEARS
oLD"

RUN

Since F and N are positive numbers, PRINT inserts a space before
and after them, therefore your display should look similar to this
(depending on your input):

IN THE YEAR 2804 YOU WILL BE 46 YEARS OLD
If we had separated each expression in line 160 by a comma,

188 PRINT "IN THE YEAR"™,F,"YOU WILL
BE",N,"YEARS OLD"

BASIC would move to the next tab position after printing each data
item.

2-140

PRINT TAB

Statement
PRINT TAB{number)

Moves the cursor to the column specified by number.

Because you can use numeric expressions to specify a tab position,
TAB is useful for creating tables, graphs of mathematical functions,
and other such screen displays.

When entering the PRINT TAB statement, type the first parenthesis
immediately after the word TAB.

Number can be in the range 1 to 80. |f number is less than or equal to
the current screen width, BASIC uses number itself as the tab
position. If number is greater than the current screen width, BASIC
performs division, as follows, to determine the tab position.

If number is: then BASIC divides number by:
greater than the current the current width, and uses the
screen width but less than remainder as the tab position.
or equal to 80

greater than 80 (the 80, and uses the remainder as
maximum screen width) the tab position.

For example, suppose that the screen width is 80 and you enter this
statement:

PRINT "NAME®™; TAB(98); "AMOUNT™

BASIC divides 90 by 80. The remainder is 10; so, BASIC moves the
cursor from column 5, where it is positioned after NAME is printed, to
column 10. It then prints AMOUNT at column 10.

Suppose that you had entered this statement, instead:
PRINT “NAME™; TAB(84); "AMOUNT"

The remainder is 4, but the current cursor position (the position after
NAME is printed) is at column 5. BASIC cannot move the cursor to
the left on the current line; so, it moves it instead to column 4 of the
next line, and prints AMOUNT there.

If the string you are printing is too long to fit on the current line,
BASIC moves the string to the first column on the next line.

2-141

Sample Program

18 PRINT “NAME"™ TAB(25) "AMOUNT":PRINT
28 READ A$, BS$

38 PRINT A$ TAB(25) B$

48 DATA "G.T.JONES","$25.88"

The display shows:

PRINT USING

Statement
PRINT USING format; data item, . ..

Prints data items using a format specified by you.

Format consists of one or more field specifiers enclosed in quotes, or
a string variable which contains the field specifier(s).

Data item may be string and/or numeric value(s).

This statement is especially useful for printing report headings,
accounting reports, checks, or any other documents which require a
specific format.

With PRINT USING, you may use certain characters (field specifiers)
to format the field. These field specifiers are described below. They
are followed by sample program lines and their output to the screen.

Specifiers for String Fields:
! Print the first character in the string only.

PRINT USING “I"; “PERSONNEL”
P

\ spaces\ Print 2+ n characters from the string. If you type the
backslashes without any spaces, BASIC prints two
characters; with one space, BASIC prints three
characters, and so on. If the string is longer than the
field, the extra characters are ignored. If the field is
longer than the string, the string is left-justified and
padded with spaces on the right. To enter a
backslash, press CLEAR(/).

2-142

PRINT USING "\bbb\"; "PERSONNEL"
(three spaces between the backslashes)
PERSO

Print the string without modifications.

10 A$="TAKE":B$ = "RACE"
20 PRINT USING "I";AS;

30 PRINT USING "&";B$
RUN

THACE

Specifiers for Numeric Fields:

#

Print the same number of digit positions as number
signs (#). If the number to be printed has fewer
digits than positions specified, the number is
right-justified (preceded by spaces). Numbers are
rounded as necessary. You may insert a decimal
point at any position. In that case, the digits
preceding the decimal point are always printed

(as zero, if necessary).

If the number to be printed is larger than the
specified numeric field, a percent sign (%) is printed
in front of the number. If rounding the number
exceeds the field, a percent sign is also printed in
front of the rounded number.

PRINT USING "##.##",111.22

%111.22

If the number of digits specified exceeds 24, an
“Hegal function call” occurs.

PRINT USING "## ##"..75

0.75

PRINT USING "###.##",876.567
876.57

Print the sign of the number. The plus sign may be
typed at the beginning or at the end of the format
string.

PRINT USING "+ ##.## "
~98.453.50,22.22, - .9
98.45 +3.60 +E2.E2 -0.9@

PRINT USING "##.## + "
~98.453.50,22.22, - .9
98.54 - 3.50+ 2222+ 0.90

(Note the use of spaces at the end of a format string
to separate printed values).

2-143

- Print a negative sign after negative numbers (and a
space after positive numbers).

PRINT USING “###.#—";, —768.660
768.7 -
ik Fill leading spaces with asterisks. The two asterisks

also establish two more positions in the field.

PRINT USING “sx####"; 44.0
s dosdd

$$ Print a dollar sign immediately before the number.
This specifies two more digit positions, one of which
is the dollar sign.

PRINT USING “$$##.##”; 112.7890
$112.79

#x§ Fill leading spaces with asterisks and print a doliar
sign immediately before the number.

PRINT USING “x:$##.##"; 8.333
448,38

s Print a comma before every third digit to the left of
the decimal point. The comma establishes another
digit position.

PRINT USING “####, . ##"; 12345

1,234.50

Print in exponential format. The four exponent signs
are placed after the digit position characters. To type
the ~, press CLEAR(GD. You may specify any decimal
point position.

PRINT USING “.####
BBBIE + 06

Annn

oo 858888

— Print next character as a literal character.

PRINT USING “_l##.##__1":12.34
112,341

Sample Program

420 CLS: A% = "xx$as #assss w8 DOLLARS™
436 INPUT "WHAT 1S YOUR FIRST NAME™; F$
440 INPUT "WHAT IS YOUR MIDDLE NAME"™; M$
450 INPUT "WHAT 1S YOUR LAST NAME™; L$
460 INPUT "ENTER AMOUNT PAYABLE"; P#

470 CLS : PRINT "PAY TO THE ORDER OF "
480 PRINT USING ™t 1t "o Fgo M . Mgy vy
490 PRINT L$

500 PRINT :PRINT USING As$; P#

2-144

PRINT @

In line 480, each ! picks up the first character of one of the following
strings (F$, “.”, M$, and “.” again). Notice the two spaces in "lplip”.
These two spaces insert the appropriate spaces after the initials of the
name (see below). Also notice the use of the variables A$ for format
and P for item list in line 500. Any serious use of the PRINT USING
statement would probably require the use of variables at least for item
list rather than constants. (We've used constants in our examples for
the sake of better illustration.)

When the program above is run, the output should look something like
this:
WHAT 1§ YOUR
WHAT 15 Y

PAY TO T

sarrn$12,435

Statement
PRINT@ location,
PRINT@ (row, column),

Specifies exactly where printing is to begin.

The location specified must be a number between ¢ and 1919. It can
also be a pair of numbers (r, ¢), where row is a number in the range
0 to 23 and column is a number in the range 0 to 79.

Whenever you instruct BASIC to PRINT @ the bottom line of the
display, it generates an automatic line feed; everything on the display
moves up one line. To suppress this automatic line feed, use a trailing
semicolon at the end of the statement.

If the sum of length of the string you are printing plus the current
cursor position is greater than 80 or the current screen width, BASIC
prints the entire string on the next line. (It does not examine the
individual characters of the string in making this decision.) If your
strings contain control characters, you may want to disable this
feature. See WIDTH.

2-145

PRINT#

Examples
PRINT @ (11,39), "xv

prints an asterisk in the middle of the display. The space between
PRINT and is optional.

PRINT @ @, '«

prints an asterisk at the top left corner of the display.

Statement
PRINT #buffer, item1, item2, ...

Prints data /tems in a sequential disk file.
Buffer is the buffer number used to OPEN the file for input.

When you first OPEN a file for sequential output, BASIC sets a
pointer to the beginning of the file — that's where PRINT# starts
printing the values of the items. At the end of each PRINT # operation,
the pointer advances, so values are written in sequence.

A PRINT# statement creates a disk image similar to what a PRINT to
the display creates on the screen. For this reason, make sure to
delimit the data so that it will be input correctly from the disk.

PRINT# does not compress the data before writing it to disk. It writes
an ASCil-coded image of the data.

Examples

If A = 123.45
PRINT #1,A

writes this nine-byte character sequence onto disk:
B123.458 carriage return

The punctuation in the PRINT list is very important. Unquoted
commas and semicolons have the same effect as they do in regular
PRINT statements to the display. For example, if A = 2300 and B =
1.303, then

PRINT #1, A,B
ENTER

2-146

PUT

writes the data on disk as
B 2300 bybBBEBEBY 1.3836 carriage return

The comma between A and B in the PRINT# list causes 10 extra
spaces in the disk file. Generally you wouldn't want to use up disk
space this way, so you should use semicolons instead of commas.

Files can be written in a carefully controlled format using PRINT#
USING. You can also use this option to control how many characters
of a value are written to disk.

For example, suppose A$ = “LUDWIG", B$ = “VON", and C$ =
"BEETHOVEN". Then the statement

PRINT #1, USING".!'.!'\BB\";A$;B$;CS$
would write the data in nickname form:
L.V.BEET

(In this case, we didn't want to add any explicit delimiters.) See
PRINT USING for more information on the USING option.

Statement
PUT buffer [,record]

Puts a record in a direct-access disk file.
Buffer is the same buffer used to OPEN the file.

Record is the record number you want to PUT into the file. it is an
integer between 1 and 65535. If omitted, the current record number is
used.

This statement moves data from the buffer of a file into a specified
place in the file.

If record is higher than the end-of-file record number, then record
becomes the new end-of-file record number.

The first time you use PUT after OPENing a file, you must specify the
record. The first time you access a file via a particular buffer, the next
record is set equal to one. (The next record is the record whose
number is one greater than the last record accessed.)

2-147

See the chapter on “Disk Files” for programming information.

PUT

1

writes the next record from buffer 1 to a direct-access file.

PUT 1, 25

writes record 25 from buffer 1 to a direct-access file.

RANDOM

Function

RANDOM

Reseeds the random number generator.

if your program uses the RND function, every time you load it, BASIC
generates the same sequence of pseudorandom numbers. Therefore,
youi may want to put RANDOM at the beginning of the program. This
will help ensure that you get a different sequence of pseudorandom
numbers each time you run the program.

RANDOM needs to execute just once.
Sample Program

600
618
620
630
640

645
650

CLS : RANDOM

INPUT "PICK A NUMBER BETWEEN 1 AND 5"; A
B = RND(B)

IF A = B THEN 658

PRINT "y0U LOSE, THE ANSWER IS'" B "--TRY
AGAIN. ™

GOTO 618

PRINT "YOU PICKED THE RIGHT NUMBER -- YOU

WIN": GOTO &18

2-148

READ

Statement
READ variable,

Reads values from a DATA statement and assigns them to variables.

BASIC assigns values from the DATA statement on a one-to-one
basis. The first time READ is executed, the first value in the first DATA
statement is used; the second time, the second value is used, and so
on.

A single READ may access one or more DATA statements (each
DATA statement is accessed in order), or several READs may access
the same DATA statement.

The values read must agree with the variable types specified in list of
variables, otherwise, a "*Syntax error” occurs. If the number of
variables in the READ statement exceeds the number of elements in
the DATA statement(s), an “Out of data” error message is printed.

If the number of variables specified is lower than the number of
elements in the DATA statement(s), subsequent READ statements
begin reading data at the first unread element.

Example
READ T

reads a numeric value from a DATA statement and assigns it to
variable “T".

Sample Program

This program illustrates a common application for the READ and
DATA statements.

4@ PRINT '"“NAME", "aAGE"

59 READ Ns

60 IF N$="END" THEN PRINT "END OF LIST": END
78 READ AGE

80 IF AGE<18 THEN PRINT N$, AGE

98 GOTO 5@

180 DATA “SMITH, JOHN", 3@, "ANDERS, T.M.", 20
118 DATA "JONES, BILL'™, 15, "“DOE, SALLY", 21
120 DATA "COLLINS, W.P.'", 17, "“END"

2-149

REM

Statement
REM

Inserts a remark line in a program.

REM instructs the computer to ignore the rest of the program line.
This allows you to insert remarks into your program for
documentation. Then, when you look at a listing of your program, or
someone else does, it will be easier to figure it out.

If REM is used in a multi-statement program line, it must be the last
statement in the line.

You may use an apostrophe (') as an abbreviation for REM.
Sample Program

118 DIM v(28)

128 REM CALCULATE AVERAGE VELOCITY
138 FOR I=1 70 28

148 SUM=SUM + V(1)

OR
118 DIM v(28)
12¢ FOR I=1 7O 28 CALCULATE AVERAGE VELOCITY
132 SuUM=SuUM + V(D)
148 NEXT I

2-150

RENUM

Statement

RENUM [new line] [,[line] [,increment]]

Renumbers a program, starting at /ine, using new line as the first new
line and increment for the new sequence.

If you omit new line, BASIC starts numbering at line 10. If you omit
line, it renumbers the entire program. If you omit increment, it jumps
10 numbers between lines.

RENUM also changes all line number references appearing after
GOTO, GOSUB, THEN, ELSE, ON ... GOTO, ON ... GOSUB, ON
ERROR GOTO, RESUME, and ERL[relational operator].

If the program contains line number references that do not exist,
RENUM does not change those line number references. We
recommend that you save a copy of the program before you
renumber it. If there are any non-existent line number references after
you renumber the program they will be easier to correct.

Examples
RENUM

renumbers the entire resident program, incrementing by 10's. The
new number of the first line will be 10.

RENUM 620, 5000, 128

renumbers all lines numbered from 5000 up. The first renumbered line
will become 600, and an increment of 100 will be used between
subsequent lines.

RENUM 12022, 1220

renumbers line 1000 and all higher-numbered lines. The first
renumbered line will become line 10000. An increment of 10 will be
used between subsequent line numbers.

RENUM 182, , 1080

renumbers the entire program, starting with a new line number of 100,
and incrementing by 100’s. Notice that the commas must be retained
even though the middle argument is gone.

2-151

RESTORE

Error Conditions

1.

RENUM cannot be used to change the order of program lines. For
example, if the original program has lines numbered 10, 20 and
30, then the command:

RENUM 15, 30

is illegal, since the result would be to move the third line of the
program ahead of the second. In this case, an “lllegal function
call” error occurs, and the original program is left unchanged.

. RENUM will not create new line numbers greater than 65529.

Instead, an “lllegal function call” error occurs, and the original
program is left unchanged.

. If an undefined line number is used inside you original program,

RENUM prints a warning message, “Undefined line XXXX in
YYYY”, where XXXX is the original line number reference and
YYYY is the original number of the line containing XXXX. Note that
RENUM renumbers the program in spite of this warning message.
It does not change the incorrect line number reference, but it does
renumber YYYY, according to the parameters in your RENUM
command.

Statement
RESTORE [line]

Restores a program’s access to previously-read DATA statements.

This lets your program re-use the same DATA lines. If line is specified,

the next READ statement accesses the first item in the specified

DATA statement.
Sample Program

168 READ Xs$

170 RESTORE

188 READ Y$

190 PRINT X$, Y$

200 DATA FIRST ITEM, SECOND ITEM

2-152

When this program is run,
FIRST ITEM SECOND 17EM

is printed on the display. Because of the RESTORE statement in line
170, the second READ statement starts over with the first DATA item.

RESUME

Statement
RESUME {line]
RESUME NEXT

Resumes program execution after an error-handling routine.

RESUME without an argument and RESUME 0 both cause the
computer to return to the statement in which the error occurred and
re-execute the statement.

If your error routine did not correct the error, the error occurs again
and the ON ERROR GOTO is taken.

RESUME line causes the computer to return to the specified line
number.

RESUME NEXT causes the computer to return to the statement
following the point at which the error occurred.

A RESUME that is not in an error-handling routine causes a
"RESUME without error” message.

Examples
RESUME

if an error has occurred, this line transfers program control to the
statement in which it occurred.

RESUME 18

if an error has occurred, transfers control to line 10.

2-153

RETURN

RIGHT$

Sample Program

12 ON ERROR GOTO 92040

280

IF (ERR=238) ANDCERL=96) THEN PRINT "TRY
AGAIN" : RESUME 80
Statement
RETURN

Returns control to the line immediately following the most recently
executed GOSUB.

If the program encounters a RETURN statement without execution of
a matching GOSUB, an error occurs.

Sample Program

3309

349
3590
360
37¢
388

PRINT "THIS PROGRAM FINDS THE AREA OF A
CIRCLE™

INPUT “TYPE IN A VALUE FOR THE RADIUS"j; R
GOsUB 370

PRINT '"AREA IS'" ; A: END
A = 3.14 » R » R
RETURN

Function

RIGHT$(string, number)

Returns the rightmost number characters of string.

2-154

RIGHTS returns the last number characters of string. If LEN (string) is
less than or equal to number, the entire string is returned.

Examples:

PRINT RIGHT$C("WATERMELON", 5)
prints MELON

PRINT RIGHT$("MILKY WAY'™, 28)
prints MILKY WAY.
Sample Program

858 RESTORE : ON ERROR GOTO 888
860 READ COMPANYS$
870 PRINT RIGHT$C(COMPANYS$, 2), : GOTO 8640
88¢ END
89¢ DATA “BECHMAN LUMBER COMPANY, SEATTLE, WA"
2098 DATA “ED NORTON SEWER SERVICE, BROOKLYN, NY*
918 DATA "HAMMOND MANUFACTURING COMPANY,
HAMMOND, IN"

This program prints the name of the state in which each company is
located.

RND

Function
RND(number)

Generates a pseudorandom number between @ and number.
Number must be greater than or equal to 0 and less than 32768.

RND produces a pseudorandom number using the current “seed”
number. BASIC generates the seed internally, therefore, it is not
accessible to the user. RND may be used to produce random
numbers between @ and 1, or random integers greater than 0,
depending on the argument.

RND(®) returns a single-precision value between @ and 1,
RND(number) returns an integer between 1 and number. For
example, RND(55) returns a pseudorandom integer between 1 and
55. RND(55.5) returns a pseudorandom number between 1 and 56
(the argument is rounded).

2155

ROW

Examples
A = RND(2)

assigns A a value of 1 or 2.
A = RND(45)

assigns A a random integer between 1 and 45.
PRINT RNDC(2)

prints a decimal fraction between @ and 1.

Function
ROW(number)

Returns the row position of the cursor.
Number is a dummy argument.

ROW finds the row in which the cursor is currently located and returns
that row number. The 24 rows are numbered 0-23.

Examples

X = ROWCY)
assigns the cursor’s current row number to X.
Sample Program

When you type a key, the program below prints: the keyboard
character, the cursor's row number and column number, and the
character's ASCII code.

18¢ CLS

118 R=¢: C=0

128 PRINT@(21,32), "ROW', "COLUMN"

138 X$ = INPUT$C1)

140 PRINT @(R,C), X$;

158 C=POSCRI: R=ROWCD)

160 PRINT @ (22,32),R,C;

163 PRINT @ (23,32), STRING$(28,32);

165 PRINT @(23,32), "ASCIIl CODE 1S
"HEX$(ASCCX$D)

170 PRINT @ (R,C),"";

188 GOTO 134

2-156

RSET

Statement
RSET field name = data

Sets data in a direct-access buffer field name.

This statement is similar to LSET. The difference is that with RSET,
data is right-justified in the buffer.

See LSET for details.

RUN

Statement
RUN [line)]
RUN filespec|,R]

Runs a program.

RUN followed by a line or nothing at all simply executes the program
in memory, starting at /ine or at the beginning of the program.

RUN followed by a filespec loads a program from disk and then runs
it. Any resident BASIC program is replaced by the new program.

Option R leaves all previously OPEN files open. If omitted, BASIC
closes all open files.

RUN automatically CLEARS all variables. However, it does not re-set
the value of an ERL variable.

2-157

SAVE

Examples
RUN
starts execution at lowest line number.
RUN 128
starts execution at line 100.
RUN "“PROGRAM/A™
loads and executes PROGRAM/A.
RUN “EDITDATA"™, R
loads and executes EDITDATA, leaving OPEN files open.

Statement
SAVE “filespec” [,A] [,P]

Saves a program in a disk file under filespec.

If filespec already exists, its contents will be lost as the file is
re-created.

SAVE without the A option saves the program in a compressed
format. This takes up less disk space. It also helps in performing
SAVEs and LOADs faster. BASIC programs are stored in RAM using
compressed format.

Using the A option causes the program to be saved in ASCII format.
This takes up more disk space. However, the ASCll format allows you
to MERGE this program later on. Also, data programs which will be
read by other programs must usually be in ASCII.

For compressed-format programs, a useful convention is to use the
extension BAS. For ASClI-format programs, use /TXT.

The P option protects the file by saving it in an encoded binary
format. When a protected file is later RUN (or LOADed), any attempt
to list or edit it fails. The only operations that can be performed on a
protected fite are: RUN, LOAD, MERGE, and CHAIN.

2-158

SGN

Examples
SAVE “FILE?1/BAS.JOHNGDOE:3"

saves the resident BASIC program in compressed format. The file
name is FILE1; the extension is /BAS; the password is JOHNQDOE.

. The file is placed on Drive 3.

SAVE "MATHPAK/TXT", A

saves the resident program in ASCII form, using the name
MATHPAK/TXT, on the first non-write-protected drive.

Function
SGN(number)

Determines number’s sign.

If number is a negative number, SGN returns — 1. If number is a
positive number, SGN returns 1. if number is zero, SGN returns 0.

Examples
Y = SGNC(A * B)

determines what the sign of the expression A = B is, and passes the
appropriate number (—-1,0,1) to Y.

Sampie Program

618 INPUT "ENTER A NUMBER"; X

628 ON SGN(X) + 2 GOTO 6306, 648, 658
638 PRINT “NEGATIVE": END

648 PRINT “ZERO"™: END

65¢ PRINT "“POSITIVE': END

2-159

SIN

SOUND

Function
SiIN(number)

Computes the sine of number.

Number must be in radians. To obtain the sine of number when
number is in degrees, use SIN(number * .01745329). The result is
always single precision.

Examples

PRINT SINC7.986)
prints .994385.
Sample Program

660 INPUT "ANGLE IN DEGREES"; A
678 PRINT “SINE IS"; SIN (A * .§1745329)

Statement
SOUND tone, duration

Generates a sound with the tone and duration specified.

Tone is a digit between @ and 7. It specifies the sound’s frequency
level. Zero specifies the lowest frequency level; seven specifies the
highest.

Duration is an integer between 0 and 31. It specifies for how iong the
sound is to be generated. Zero specifies the shortest duration; 31 the
longest.

While the SOUND statement is being executed, you cannot interrupt
it. You can, however, stop BASIC as soon as SOUND finishes
executing. To do this, hoid down (BREAK).

2-160

SPACES

This statement can be especially useful in educational applications.
For example, you can have the computer respond with a sound if a

user has

answered a program’s prompt incorrectly (or vice versa).

Sample Program

19 INPUT "IN HONOR OF WHOM WAS THE CONTINENT OF
AMERICA NAMED"; A$

20 IF A$="AMERIGD VESPUCCI'" THEN SOUND 7,2 ELSE
GOTO 40

30 PRINT "THAT’S RIGHT!": END

40 SOUND 1,2 : PRINT "THE CORRECT ANSWER IS
AMERIGD VESPUCCI™

Function
SPACES(number)

Returns a string of number spaces.

Number must be in the range 0 to 255.

Example

PRI
"Qu

NT "DESCRIPTION" SPACES$(4) “TYPE" SPACES$()
ANTITY"

prints DESCRIPTION, four spaces, TYPE, nine spaces, QUANTITY

Sample

9240
938
9490
958¢
960
979

Program

PRINT "Here'

PRINT SPACE$(13) "is®
PRINT SPACE$(26) '"an®
PRINT SPACE$(39) "example"
PRINT SPACE$(52) "of"
PRINT SPACE$(G5) ''SPACEs"

2-161

SPC

Function
SPC(number)

Prints a line of number blanks.

Number is in the range @ to 255. SPC does not use string space. The
left parenthesis must immediately follow SPC.

SPC may only be used with PRINT, LPRINT, or PRINT#.
Example

PRINT "HELLO™ SPCC15) "THERE™
prints HELLO, 15 spaces, THERE

SQR

Function
SQR(number)

Calculates the square root of number.
The number must be greater than zero.
The result is always single precision.
Example

PRINT SQRC155.7)
prints 12,478,

2-162

STOP

Sample Program

688 INPUT "TOTAL RESISTANCE (OHMS)':; R
690 INPUT "TOTAL REACTANCE (OHMS)I"™; X
788 Z = SQGRO(R * R) + (X * X))

718 PRINT "TOTAL IMPEDANCE (OHMS) IS" 2Z

This program computes the total impedance for series circuits.

Statement
STOP

Stops program execution.

When a program encounters a STOP statement, it prints the message
BREAK IN, followed by the line number that contains the STOP.
STOP is primarily a debugging tool. During the break in execution,
you can examine variables or change their values.

The CONT command resumes execution at the point it was halted.
But if the program itself is altered during the break, CONT cannot be
used.

Sample Program

2260 X = RNDC1@)
2278 STOP
2288 GOTO 22686

A random number between 1 and 10 is assigned to X, then program
execution halts at line 2270. You can now examine the value X with
PRINT X. Type CONT to start the cycle again.

2-163

STR$

STRINGS

Function
STRS(number)

Converts number into a string.
If number is positive, STR$ places a blank before the string.

While arithmetic operations may be performed on number, only string
functions and operations may be performed on the string.

Example

5% = STR$CX)
converts the number X into a string and stores it in S$.
Sample Program

19 A = 1.6 ¢ B¥ = A 1 C# = VAL(STR$C(A))

20 PRINT “REGULAR CONVERSION™ TAB(48) “SPECIAL
CONVERSION™

39 PRINT B# TAB(48) C#

Function

STRINGS(number,character)

Returns a string of number characters.
Number must be in the range 0 to 255.

Character is a string or an ASCIi code. If you use a string constant, it
must be enclosed in quotes. All the characters in the string will have
either the ASCIl code specified, or the first letter of the string
specified,

STRINGS is useful for creating graphs or tables.

2-184

SWAP

Examples:
B$ = STRINGS(25, “X')
puts a string of 25 "X"s into BS.
PRINT STRINGS(S58, 18)

prints 50 biank lines on the display, since 10 is the ASCli code for a
line feed.

Sample Program

184¢ CLEAR 308
1858 INPUT "TYPE IN THREE NUMBERS BETWEEN 33
AND 159"; N1, N2, N3

1868 CLS: FOR 1 = 1 TO 4: PRINT STRINGS(28,
N1Y: NEXT I

187¢ FOR J = 1 TO 2: PRINT STRING$(40, N2):
NEXT J

1088 PRINT STRINGS$(80, N3)

This program prints three strings. Each string has the character
corresponding to one of the ASCHI codes provided.

Statement
SWAP variable1, variable2

Exchanges the values of two variables.

Variables of any type may be SWAPped (integer, single precision,
double precision, string). However, both must be of the same type,
otherwise, a "Type mismatch’ error results.

Either or both of the variables may be elements of arrays. If one or
both of the variables are non-array variables which have not been
assigned values, an "lilegal Function Call”" error results.

Example
SWAP F1#, Fo#

swaps the contents of F1# and F2#. The contents of F2# are put
into F1#, and the contents of F1# are put into F2#.

2-165

SYSTEM

Sample Program

18 A$=""0ONE ":B$="ALL ":C¢="FOR "
28 PRINT A$ C$ Bs$

3¢ SWAP A%, B$

49 PRINT A% C$ Bs

Statement
SYSTEM [“command”]

Returns you to TRSDOS level.

Command tells the system to execute the specified TRSDOS
command and immediately return to BASIC. Your program and
variables are not affected. If command is a constant, it must be
enclosed in quotes. You can specify only the TRSDOS library
commands, not the utilities.

If you omit command, SYSTEM returns to the TRSDOS Ready mode.
Your resident BASIC program is not retained in memory.

NOTE: You cannot call DEBUG from BASIC.

If an error occurs during the execution of command, BASIC either
stops and displays an error message or transfers control to the ON
ERROR routine. ERR$ will contain the TRSDOS error or BASIC error
70 (Command Aborted).

Some library commands have options that cannot be used in the
SYSTEM command. For example, the CAT and DIR commands
cannot sort filenames because of insufficient memory. Therefore,
TRSDOS always uses SORT =NO; if you specify SORT = YES,
TRSDOS ignores it.

Examples
SYSTEM

returns you to TRSDOS. Your resident BASIC program is lost.
SYSTEM “DIR"

runs the TRSDOS command, DIR (print directory), then returns to
BASIC. Your resident BASIC program remains intact.

2-166

TAN

Function
TAN(number)

Computes the tangent of number.

Number must be in radians. To obtain the tangent of number when it
is in degrees, use TAN {number = .01745329). The result is always
single precision.

Examples

PRINT TANC7.96)
prints —8.398702
Sample Program

728 INPUT "ANGLE IN DEGREES"; ANGLE
738 T = TANCANGLE + .81745329)
748 PRINT "“TAN IS" T

2-167

TIME$

Function
TIMES

Returns the time of the day.
This function lets you use the time in a program.

The operator sets the time initially when TRSDOS is started up. When
you request the time, TIME$ supplies it using this format:

14:47:18
which means 14 hours, 47 minutes and 18 seconds (24-hour clock).
To change the time, use the TRSDOS command, TIME. For example,
SYSTEM “TIME 16:15:88"
Example
As$ = TIMES
stores the current time in AS.
Sample Program
1130 SYSTEM “TIME 10:15:80"

1148 I1F LEFTSCTIMES, 5) = "1@:15" THEN PRINT
“Time is 18:15 AM.--time 1o pick up the
mail." : END

1156 GOTO 11448

2-168

TROFF, TRON

Statements
TROFF

TRON

Turn the "trace function” on/off.

The trace function lets you follow program flow. This is helpful for
debugging and analyzing of the execution of a program.

Each time the program advances to a new line, TRON displays that
line number inside a pair of brackets. TROFF turns the tracer off.

Sample Program

2298 TRON
2388 X = X * 3.14159
231¢ TROFF

Lines 2290 and 2310 above might be helpful in assuring you that fine
2300 is actually being executed, since each time it is executed [2300]
is printed on the display.

After a program is debugged, the TRON and TROFF statements can
be removed.

2-169

USR

Function
USRI[digit|(expression)

Calls a user's assembly-language subroutine identified with digit and
passes expression to that subroutine.

The digit you specify must correspond to the digit supptied with the
DEF USR statement for that routine. If digit is omitted, zero is
assumed.

This function lets you calt as many as 10 machine-language
subroutines, then continue execution of your BASIC program.
Subroutines must have been previously defined with DEF USR[digit]
statements.

When BASIC encounters a USR call, it transfers control to the
address defined in the DEF USR[digit] statement. (This address
specifies the entry point to your machine-language subroutine.)

“Machine language” is the low-level language used internally by your
computer. It consists of Z-80 microprocessor instructions.
Machine-fanguage subroutines are useful for special applications
(things you can't do in BASIC) and for doing things very fast (like to
"white-out” the display).

Writing such routines requires familiarity with assembly-tanguage
programming and with the Z-80 instruction set. There are books
avaitable on this subject; check your local Radio Shack or a book
store.

Example
X = USRSCY)

calls the machine-language routine USR5, previously defined in a
DEF USR5 = address statement.

Passing arguments from BASIC to the subroutine:

Upon entry to a USR subroutine, the following register contents are
set up (for notation, see the TRSDOS reference section in this
manual):

A = Type of argument in USR[digit] reference
A = 8 if argument is double-precision
4 if argument is single-precision

]

A

2-170

HL

DE

= 2 if argument is integer
A = 3 if argument is string

When the argument is a number, this register
points to the argument storage area(ASA)
described later.

When the argument is a string, this register points
to a string description, as follows: The first byte
gives the length of the string. The next two bytes
give the address where the string is stored: least
significant byte (LSB) followed by most significant
byte (MSB).

Description of Argument Storage Area (ASA) — for numeric values

only.

For double-precision numbers:

ASA + 3

ASA + 2

ASA + 1
ASA
ASA - 1
ASA -2
ASA - 3
ASA - 4

Exponent in 128-excess form, e.g., a value of 128
indicates a @ exponent; a value of 66 indicates a
—62 exponent. A value of @ always indicates the
number is zero.

Highest seven bits of the mantissa with hidden
(implied) leading one. Bit 7 is the sign of the
number (0 positive, 1 negative), e.g., a value of
X'84' indicates the number is negative and the
MSB of the mantissa is X'84". A value of X'04'
indicates the number is positive and the MSB of
the mantissa is X'84".

Next MSB of the mantissa.

Next MSB.

Next MSB.

Next MSB.

Next MSB.

Lowest eight bits of the mantissa.

For single-precision numbers:

ASA
ASA + 1
through
ASA + 3

For integers:

ASA
ASA + 1

LSB of the mantissa.
Same as for double-precision numbets.

LSB of the number

MSB of the number. Together, the two bytes
represent the number in signed, two’s complement
form.

2-171

Your routine can call BASIC’s FRCINT routine to put the argument
into HL in 16-bit, signed two’s complement form. The address of
FRCINT is stored in [X'2603’, X'2604'].

For example, you can put the following code at the beginning of your
subroutine:

FRCINT EQU 268 3H ;CONVERTS USR ARGUMENT

5T0 INTEGER IN HL

LD HL,CTNU sCHL)=CONTINUATION
;ADDRESS

PUSH HL ;SAVE IT FOR RETURN
sFROM FRCINT

LD HL,CFRCINT) 5(HL)=FORCE INTEGER
sROUTINE

JP C(HL)D ;D0 FRCINT ROUTINE

Returning values from the subroutine to BASIC:

If the USRIdigit] expression is a variable, you can modify its value by
changing the ASA or string contents, as pointed to by HL or DE. For
example, the statement:

X=USR1(A%)

transfers control to the USR1 subroutine, with HL pointing to the
two-byte ASA for integer variable A%. Suppose you modify the
contents of its storage area. When you do a RET instruction to return
to BASIC, A% will have a new value, and X will be assigned this new
value.

in general, USR[digit(expression) will return the same type of value
as expression. However, you can use BASIC's MAKINT routine to
return an integer vaiue. The address of the MAKINT routine is stored
at [X'2605’,X'2606'].

For example, you might inciude the following code at the end of your
program to return a vaiue to BASIC:

MAKINT EQU 2605H

LD HL, VAL sVAL IS THE VALUE TO
;sBE RETURNED.
PUSH HL 3SAVE VALUE IN STACK
LD HL, (MAKINT) RESTORE VAL INTO HL
EX (SP), HL sAND PUT MAKINT
3 INTQ STACK
RET

2-172

VAL

Function
VAL(string)

Calculates the numerical value of string.

VAL is the inverse of the STR$ function; it returns the number
represented by the characters in a string argument. This number may
be integer, single precision, or double precision, depending on the
range of values and the rules used for typing all constants.

For example, if A$ = 12" and B$ = "34" then VAL(A$ + ".” + B$)
returns the value 12.34 and VAL(A$ + “E"” + BS$) returns the value
12E34, that is, 12 + 10734,

VAL terminates its evaluation on the first character which has no
meaning in a numeric value.

If the string is non-numeric or null, VAL returns a zero.
Examples
PRINT VAL("™188 DOLLARS'™)
prints 100,
PRINT VAL('™1234E5")
prints 1.234E + 08,
B = VALCU3" + "t 4 wpn)

assigns the value 3 to B (the asterisk has no meaning in a numeric
term).

Sample Program

18 READ NAMESS$, CITY$, STATES, ZIPS$

20 IF VAL(ZIP$) < 90800 OR VAL(ZIP$) > 96699
THEN PRINT NAME$ TAB(25) "0OUT OF STATE"

30 IF VAL(ZIPS$) > 96881 AND VAL(ZIP$) <= 9815
THEN PRINT NAMES$ TABC(25) "LONG BEACH"

2-173

VARPTR

Function
VARPTR (variable)
or
VARPTR (#buffer)

Returns the absolute memory address.

VARPTR can help you locate a value in memory. When used with
variable, it returns the address of the first byte of data identified with
variable.

When used with buffer, it returns the address of the file's data buffer.

If the variable you specify has not been assigned a value, an " lilega!
Function Call’ occurs. If you specify a buffer that was not allocated
when loading BASIC, a " Bad file numbe/" error occurs. (See Chapter
1 for information on how to load BASIC.)

VARPTR is used primarily to pass a value to a machine-language
subroutine via USR[digit]. Since VARPTR returns an address which
indicates where the value of a variable is stored, this address can be
passed to a machine-language subroutine as the argument of USR;
the subroutine can then extract the contents of the variable with the
help of the address that was supplied to it.

If VARPTR returns a negative address, add it to 65536 to obtain the
actual address.

If VARPTR(integer variable) returns address K:

Address K contains the least significant byte (LSB) of the 2-byte
integer.

Address K + 1 contains the most significant byte (MSB) of the
integer.

If VARPTR(single-precision variable) returns address K:

(K)* = LSB of value

K+ 1) = Next most significant byte(Next MSB)

K+ 2) = MSB with hidden (implied) leading one. Most
significant bit is the sign of the number

(K + 3) = exponent of value excess 128(128 is added to the

exponent).

2-174

If VARPTR(double-precision variable) returns K:

K) = LSB of value

K+ 1) = Next MSB

(K + ...) = NextMSB

(K + 6) = MSB with hidden (implied) leading one. Most
significant bit is the sign of the number.

K+ 7) = exponent of value excess 128 (128 is added to the

exponent).

*(K) signifies “contents of address K~

For single and double-precision values, the number is stored in
normalized exponential form, so that a decimal is assumed before the
MSB. 128 is added to the exponent. Furthermore, the high bit of MSB
is used as a sign bit. It is set to 0 if the number is positive or to 1 if
the number is negative. See examples below.

If VARPTR(string variable) returns K:

(K) = length of string
(K + 1) = LSB of string value starting address
(K + 2) = MSB of string value starting address

The address will probably be in high RAM where string storage space
has been set aside. But, if your string variable is a constant (a string
literal), then it will point to the area of memory where the program line
with the constant is stored, in the program buffer area. Thus, program
statements like A$="HELLO” do not use string storage space.

For all of the above variables, addresses (K-1) and (K-2) stores the
TRS-80 Character Code for the variable name. Address (K-3)
contains a descriptor code that tells the computer what the variable
type is. Integer is 02; single precision is 04; double precision is 08;
and string is 03.

VARPTR(array variable) returns the address for the first byte of that
element in the array. The element consists of 2 bytes if it is an integer
array; 3 bytes if it is a string array; 4 bytes if it is a single precision
array; and 8 bytes if it is a double precision array.

The first element in the array is preceded by:

1. A sequence of two bytes per dimension, each two-byte pair
indicating the “depth” of each respective dimension.

2. A single byte indicating the total number of dimensions in the
array.

3. A two-byte pair indicating the total number of elements in the
array.

4. A two-byte pair containing the ASCll-coded array name.

2-175

5. A one-byte type-descriptor(02 = Integer, 03 = String, 04 =
Single-Precision, 08 = Double-Precision).

ltem 1 immediately precedes the first element, ltem 2 precedes ltem
1, and so on.

The elements of the array are stored sequentially with the first
dimension-subscripts varying "fastest”, then the second, etc.

Examples
Al = 2 is stored as follows:

2 = 10 Binary, normalized as .1E2 = .1 x 10 (to the second)

So exponent of A is 128+2 = 130 (called excess 128)

MSB of A is 10000000; however, the high bit is changed to zero since
the value is positive(called hidden or implied leading one).

So Al is stored as

Exponent(K + 3) MSB(K + 2) Next MSBC(K + 1) LSBC(K)
138 [[2

Al= 5 is stored as

Exponent(K + 3) MSB(K + 2) Next MSB(K + 1) LSBWK)
128 128 i)

Al=7 is stored as

Exponent(K + 3> MSBC(K + 2) Next MSB(K + 1) LSBC(K)
131 96 2 g

Al=7:

Exponent(kK + 3) MSB(K + 2) Next MSB(K + 1) LSB(K)
131 224 2 [

Zero is stored as a zero-exponent. The other bytes are insignificant.
Y = USR1(VARPTRCnumber))

If number is an integer value, VARPTR(number) finds the address of
the least significant byte of number. This address is passed to the
subroutine, which in turn passes its result to V.

2-176

WAIT

Statement
WAIT port, integer1 [integer2]

Suspends program execution until a machine input port develops a
specified bit pattern. (A port is an input/output location.)

The data read at the port is exclusive OR’ed with integer2, then
AND'ed with integer?. If the result is zero, BASIC loops back and
reads the data at the port again. If the result is nonzero, execution
continues with the next statement. If integer2 is omitted, it is assumed
to be zero.

it is possible to enter an infinite loop with the WAIT statement. In this
case, you will have to manually restart the machine. To avoid this,
WAIT must have the specified value at port number during some point
in program execution.

For information on assigned ports, refer to the Model 4/4P Technical
Reference Manual.

Example
188 WALT 32,2

2-177

WHILE WEND

Statement
WHILE expression

{loop statements}

WEND

Execute a series of statements in a loop as long as a given condition
is true.

It expression is not zero (true), BASIC executes loop statements until
it encounters a WEND. BASIC returns to the WHILE statement and
checks expression. If it is still true, BASIC repeats the process. If it is
not true, execution resumes with the statement following the WEND
statement.

WHILE/WEND loops may be nested to any level. Each WEND
matches the most recent WHILE. An unmatched WHILE statement
causes a "WHILE without WEND " error, and an unmatched WEND
causes a 'WEND without WHILE” error.

Sample Program

8¢ ‘BUBBLE SORT ARRAY As

198 FLIPS=1 ‘FORCE ONE PASS THRU LOOP

110 WHILE FLIPS

115 FLIPS=8

128 FOR I=1 TO J-1

138 IF ASCIDI>A$CI+1ITHEN SWAP ASCI), As(CI+1):
FLIPS=1

140 NEXT I

158 WEND

This program sorts the elements in array A$. Control falls out of the
WHILE loop when no more SWAPS are performed on line 130.

2-178

WIDTH

Statement
WIDTH [LPRINT] size

Sets the line width in number of characters for the display or line
printer. If you omit the LPRINT option, BASIC sets the width at the
screen.

size may be an integer in the range 15 to 255 that specifies the
number of characters in a line. If you omit the LPRINT option, size
can be 15 to 80 for the screen.

If size is 255, the printer width is infinite. That is, BASIC never inserts
a carriage return. However, after printing the 255th character, LPOS
and POS return a value of 0.

Note: if you are using the TRSDOS program FORMS/FLT, the printer
width must be set at 255 for FORMS/FLT to function properly.

If you execute a WIDTH statement to change the width of the screen
or printer, we recommend that you execute another WIDTH statement
to restore the width to its default values before you exit BASIC.

When width is set less than the default values, BASIC issues a
carriage return after printing every size character. BASIC does not
separate the characters in a string uniess the string is longer than the
total width of the screen. For example:

19 WIDTH 18
29 PRINT "ABCDEFGHIJKLMNOPGRSTUVKHXYZ";"1234567820"
RUN

The screen displays:
I3 £
STUVRXYZ

Fesdy

After printing 18 characters of the string, BASIC issues a carriage
return and prints the remaining characters in the first string. BASIC
checks to see if there are enough positions left in the current line to
print the second string and prints the second string.

If a string contains less characters than the width but there are not
enough positions remaining on the current line, BASIC prints the
string on the next line. BASIC only separates the characters in a
string when the cursor is in the first column. For example:

2-179

18 WIDTH 18

2¢ PRINT ' ABCDEFGHIJKLMNOPGRSTUVWXYZ **;"
1234567880

RUN

The screen displays:

Before printing the first string, BASIC checks to see if there are
enough positions remaining on the current line to print the entire
string. The string contains 28 characters and the screen width is only
18. If the cursor is in Column 1, BASIC prints that portion of the string
that will fit on the line, issues a carriage return and prints the
remaining characters in the string on the next line. BASIC checks to
see if there are enough positions left on the line to print the second
string. There are only nine positions left on the current line and the
second string contains 12 characters. BASIC issues a carriage return
before printing the second string.

Example

10 WIDTH 28
28 PRINT "MarionRich";"10882 Easy Street';
YArlington, TX 78813"

displays:

2-180

WRITE

Statement
WRITE [data,...)

Writes data on the display.

WRITE prints the values of the data items you type. If data is omitted,
BASIC prints a blank line. The data may be numeric and/or string.
They must be separated by commas.

When the data are printed, each data item is separated from the last
by a comma. Strings are delimited by quotation marks. After printing
the last item on the list, BASIC inserts a carriage return.

Example

18 D=95:B=76:V$="GDOD BYE"
2¢ WRITE D, B, V$
RUN

a5,

Ready

2-181

WRITE#

Statement
WRITE #buffer, data, . ..

Writes data to a sequential-access file.
Buffer must be the number used to OPEN the file.
The data you enter may be numeric or string expressions.

WRITE# inserts commas between the data items as they are written
to disk. it delimits strings with quotation marks. Therefore, it is not
necessary to put explicit delimiters between the data.

The items on data must be separated by commas.

WRITE# inserts a carriage return after writing the last data item to
disk.

For example, if
A$="MICROCOMPUTER" and B$=""NEWS"
the statement
WRITE #1, A$,B$
writes the following image to disk:
“MICROCOMPUTER' , "NEWS"

2-182

Part III/ Appendices

Appendix Page
A/ Job Control Language oo A-3
B/ Hardware i A-35
C/ Character Codes A-45
D/ Error Messages and Problems A-61
E/ Converting MODEL Il BASIC Programs o

Model 4 Mode oo A-77
F/ BASIC Keywords and Derived Functions ..., A-81
/ BASIC Worksheetso A-85
H/ Glossary e A-87
I/ TRSDOS Programs.........ooiiiiiii i A-93
JEoMemory Maps ... A-105
K/ Using the Device-Related Commands A-109
L/ BOHzZ ACPower A-117
/ Backup Limited Diskettes A-119
N/ Converting Mode! 4 Data Files

toModel Il Mode A-123

Appendix A/ Job Control Language

The TRSDOS Job Control Language (JCL) is one of the most
powerful features of TRSDOS. It consists of:

® TRSDOS commands
® Macros
® Special symbols

You can use JCL to make your computer more “user friendly.” That
is, you can write JCL programs that perform a variety of functions,
such as FORMAT and BACKUP, and have TRSDOS execute these
functions when the user types in one command line.

If you have read the entries on the BUILD and DO commands, you
know how to create a JCL file composed of TRSDOS commands. You
can make this file more powerful by utilizing macros and other
features of JCL. This section describes how.

The steps for creating and using a JCL file are:

1. Create a JCL file consisting of TRSDOS commands, macros, or
special symbols. You can do this with the BUILD command,
SCRIPSIT, or a BASIC program.

2. Execute the JCL file with the DO command. This causes the JCL
processor to:

® Take control of the keyboard (for line input)

® Read a line in the DO file exactly as if it came from the
keyboard

® Return control of the keyboard to the user when it reaches the
last line.

The following sections give complete information on all the JCL
features:

® Simple JCL Execution
® Simple JCL Compiling
® Advanced JCL Compiling

A-3

Simple JCL Execution

This section lists the execution macros and gives examples on how to
create and run a JCL file.

Creating a JCL File

A JCL file contains characters normally available from the keyboard
(ASCIH characters).

There are several ways to create a JCL file: the BUILD library
command lets you create or extend a JCL file, but it does not let you
edit an existing file. You can create and edit a JCL file with a BASIC
program. A word processing system, such as SCRIPSIT, will also let
you create or edit a JCL file.

Restrictions of JCL

¢ A JCL file line cannot be longer than 79 characters. Depending on
the JCL method used (execute only or compile), JCL either ignores
all characters after the 79th or aborts the processing entirely.

® Any program or utility with unpredictable prompts will not function
properly when run from a JCL file.

& Any program or utility which requires removing the system disk
causes the JCL to abort.

e You cannot execute certain TRSDOS library commands and utilities
from a JCL file. The commands and utilities NOT valid from a JCL
file are : certain BACKUP commands, BUILD, certain CONV
commands, all (X) commands, DEBUG, certain PURGE commands,
SYSGEN, and SYSTEM (SYSTEM =) command.

® As a general rule, you should not use a library command or utility
when you specify the QUERY parameter.

A-4

Table 1/ Execution Macros

Macro Group Description

Group

Macros

Macro
Description

Execution
Comment

.Comment

Displays a comment on
the screen during
execution. Comments
are written to
SYSTEM/AJCL.

Termination
Macros

Terminate
execution.

#ABORT

EXIT

#STOP

Stops execution,
displays "Job aboried”,
Returns to TRSDOS or
BASIC Ready.

Stops exscution,
displays "Job done”.
Returns to TRSDOS or
BASIC Ready.

Stops execution.
Returns control to the
user program.

Pause/Delay
Macros

Provide
special
functions.

{PAUSE

/IDELAY

TWAIT

//SLEEP

Suspends execution and
displays a message.
Suspends execution and
displays a message for
a specified amount of
time.

Suspends execution
depending upon the
setting of the system
clock.

Suspends execution for
a predetermined amount
of time,

Alert
Macros

Provide
video and

audio alerts.

HFLASH

HALERT

Flashes a message on
the screen a specified
number of times.
Provides an audible
signal to the operator.

Keyboard
Macros

Accept key-
hoard input.

(IKEYIN

ANPUT

Selects predefined
blocks of JCL lines.
Inputs a line of infor-
mation from the
keyboard.

A-5

JCL Execution Macros

A macro is a pre-defined JCL instruction. //ABORT is an example of a
macro symbol. Macro symbols must start at the first character position
in the line. An execution macro cannot be the first line in a JCL
file.

The JCL execution macros are:

//ABORT

Use this macro to exit a JCL procedure {if an error is encountered)
and return to the program that initiated the DO command.

Your system returns you to the calling program if your JCL processing
logic detects an error. The following message:

is displayed when an error is encountered.

//ALERT [{ltone, silence, tone,silence, . . .[}]

Use this macro to produce tones to the operator. /ALERT can
generate up to eight different tones using the sound generator inside
the computer.

You could use this macro to signify the end of a large JCL procedure.
It could also be used during the execution of a procedure to bring
attention to a specific process.

Tone is controlled by a number ranging from 0 - 7, with 7 producing
the lowest tone and 0 producing the highest tone.

The tone is followed by a period of silence which you select with a
second number ranging from 0 - 7, with 7 producing the longest
period of silence and 0 producing the shortest period of silence. Tone
and silence must be entered as number pairs (for example, “1,0").
You can enter as many number pairs as can fit on one line.

You can repeat the tone-silence sequence by enclosing the entire
ing in parentheses. The sequence keeps repeating until you press

aborts the JCL.

Any value entered (for tone or silence) is used in its modulo 8 form.
That is, if you enter the number 8, a zero value is assumed. For
example, the value 10 produces the tone assigned to 2.

//DELAY duration

The //DELAY macro provides a definite timed pause with execution
automatically continuing at the end of the delay. The actual delay will
be approximately 8.1 second per count. The count ranges from 1 to
256. Thus, a delay of from 0.1 second to 25.6 seconds is possible.

A8

You could use the /DELAY macro to suspend execution long enough
for you to make sure the printer is ready to print.

The execution time of a /DELAY macro will vary slightly according to
the speed TRSDOS is running under (FAST or SLOW). See the
SYSTEM library command.

//EXIT

Use this macro to halt execution of JCL processing and return to the
program that initiated the DO command.

If you do not enter a termination macro in a JCL file, the JCL
processing terminates when it reaches the end of the file (as if /EXIT
were the last line in the JCL file). The following message is displayed:

Job dore
This message indicates a normal conclusion of the JCL file.

You should use /EXIT if the conclusion of the JCL file also represents
the conclusion of the job that is running. So, /EXIT can be used to
conclude a program that does not require any more keyboard input,
and needs to return to TRSDOS Ready or BASIC Ready after it
finishes.

To conclude a program that requires additional keyboard input, use
the //STOP macro. Using the /EXIT macro would terminate the
program.

//FLASH [duration] message

This macro flashes message on and off the video screen. duration is
the number of times the message will flash and can be any number
from 0 to 255. if duration is not specified, the message flashes 256
times. The message is any comment that you want displayed (up to
72 characters).

//REYIN [comment string)

Use this macro to prompt for a single character entry (@ - 9), with the
entire /KEYIN line being displayed.

During execution, press the appropriate character (@ - 9) to select the
corresponding execution block in a JCL file. There can be up to ten
execution blocks in a JCL file, each tagged with // and & number 0 - 8.

Do not use /KEYIN to enter data at execution time. If you do need to
enter data at execution time, use the /INPUT macro.

//INPUT [message string]

Use this macro to input a line from the keyboard during JCL
execution. With this macro, control of the keyboard is temporarily

A7

returned to the operator. Now, any command can be typed on the
keyboard and then passes to the system.

The number of characters allowed in the input line depends on where
the JCL execution is when the //INPUT is encountered. For example,
if the JCL is executing at the TRSDOS Ready level, then you can
enter up to 80 characters, the same as for a normal TRSDOS
command. If the //INPUT is encountered after going into BASIC, then
you can enter up to 255 characters.

When you use the /INPUT macro, you should exercise some caution
to assure that the command typed in is valid at the level it will be
executed. For example, if you enter a program name incorrectly, the
error message " Prograra not found” is displayed and the JCL
execution aborts.

/IPAUSE [message string]

When this macro is encountered in an executing JCL file, it is
displayed on the screen along with a message. You can use the
message to inform the operator why the pause was ordered. Press
(ENTER to resume JCL execution, or press (BREAK) to abort the JCL.

Trie JDELAY, /WAIT, and //SLEEP macros are similar to the #/PAUSE
macro, and are used to give JCL execution a specific delay period.

//SLEEP hh:mm:ss

Use this macro to put the system “to sleep” for the amount of time
you specify.

//SLEEP adds the specified time to the current system time and waits
until that time to begin or resume execution.

Suppose you have two programs that begin execution every morning
at 10 o'clock and each program runs for two hours. You could execute
the first program and have the /SLEEP macro "halt” execution of the
second program for an hour lunch break. After the system “sleeps”
for the specified hour, the second program is executed.

/ISTOP

Use this macro to halt execution of a JCL file and return keyboard
control to the applications program that requests additional keyboard
input.

If you do not use the /STOP macro, you automatically return to
TRSDOS Ready or BASIC Ready. You can also use the /ABORT and
HEXIT macros to force an end to the JCL execution and return to
TRSDOS Ready or BASIC Ready.

A-8

//WAIT hh:mm:ss

The //WAIT macro is similar to /DELAY, except that the length of the
delay depends on the setting of the system clock.

The //WAIT macro puts the entire system in a “‘sleep” state until the
system clock matches the time you specified.

You can set the system clock with the TIME library command. You
can also set the time from a JCL file by using a direct execution of the
TIME library command, or with the /INPUT macro. Set the clock in
the format hh:mm:ss.

Examples
The easiest JCL file to understand is one containing only commands.

Use the BUILD command to create the following JCL file named
START/JCL:

DEVICE
FREE

If you issue a DO = START command (see the DO library command}.
your computer displays the device table, lists free space information
about all enabled drives, and returns to THSDOS Feady.

Because an execution macro cannot be the first line in a JCL
file, you could use an execution comment to display an
informative message as the JCL file begins to execute, An
execution comment begins with a period, which must be in the
first character position of the line. You couid label START/ICL as
follows:

This program execules the DEVICE and FREE
commands .
DEVICE
FREE
//EXIT

This comment describing the file’s purpose is displayed when the JCL
executes. Notice that we added the termination macro 7EXIT.

You can use the /PAUSE macro in START/JCL as follows:

This program execules ithe DEVICE and FREE
library commands.
//PAUSE Be sure the correct disk is in Drive 8!
DEVICE
FREE
//EXIT

A-8

This example suspends the JCL before DEVICE executes, so you can
be sure that the correct disk is in Drive 0. Press (ENTER) to continue
the JCL.

You can use the /DELAY macro if you want to display an informative
message to the operator. For example:

BE SURE THAT THE PRINTER IS TURNED ON!
//DELAY 59
DEVICE (P)
FREE (P)
J/EXIT

This example displays the above informative message and delays
execution for approximately 5 seconds. After the delay, it executes
DEVICE and FREE.

it you want your system to execute START/JCL at a certain time of
the day, use the //WAIT macro as follows:

This program runs at 2:15 a.m.
//WATT $2:15:090
DEVICE
FREE
//EXIT

This example displays the comment and then waits until the system
clock matches the time of 02:15:00 specified in the //WAIT macro. It
would then execute DEVICE and FREE, and return to TRSDOS
Ready.

This program runs after a two-hour pause.
//SLEEP 82:08:090
DEVICE
FREE
//EXIT

This example displays the comment and then “sleeps” for two hours.
it then executes DEVICE and FREE, and returns to THEDOS Heady.

To use the //FLASH macro, modify START/JCL as follows:

This program executes the DEVICE and FREE
commands.
DEVICE
//FLABH 18 Starting execution of FREE
FREE
//EXIT

Atter DEVICE executes, the //FLASH line is displayed. It flashes on
and off 10 times, as specified by the duration count. You can press
(ENTER) to stop the flash and proceed to the next line. Pressing

(BREAK} white the message is flashing aborts the JCL and displays the
message “Job A

You can modify START/JCL to show several uses of /ALERT:

This program shows several uses of //ALERT.
TURN TO PAGE 4 AT THE TONE.

//ALERT 0,0,1,5,0,2
PRESS ENTER TO BEGIN EXECUTION.

//ALERT €1,8,7,8)

DEVICE

FREE

//EXIT

The first tone tells you when to turn to page 4. The second tone

or (BREAK) to abort the JCL.

The next example shows how you could build a menu using execution
comments to display different program choices. Using the /KEYIN
macro lets you press a single key to execute the desired program.

START/JCL
Program 1 is FREE :0
Program 2 is FREE
. Program 3 is DEVICE
//KEYIN Select program, 1 -~ 3
/71
FREE :0
//EXTT
/712
FREE
//EXIT
//3
DEVICE
//EXIT
177/

There are two new macros used in this example, They are //number
and ///.

/Inumber is used to start a block of lines that corresponds to a value
selected with the /KEYIN macro. This block extends until the next
/inumber or to the ///.

/I (the triple slash) is used to mark the end of all //number blocks.
JCL stops looking for a match as soon as it encounters a ///.
Execution continues with the following line.

In the above example, pressing 1, 2, or 3 selects the corresponding
block of lines and runs the appropriate command. If you press a key
other than 1, 2, or 3, all three //number blocks are ignored, and
execution continues with the line after the ///.

A-t1

JCL Compiling

The lines following the /// could contain other command options or an
/ABORT macro to abort the JCL. One possible option could be to let
the operator type in his own command.

Consider the following rewrite of START/JCL that uses the /INPUT
macro to let the operator type in his own command:

START/JCL
Program 1 13 FREE :8
Program 2 is FREE
. Program 3 its DEVICE
//KEYIN Select program, 1 - 3
/71
FREE :¢
//EXTT
/72
FREE
//EXTT
/73
DEVICE
//EXTIT
/77
//INPUT Enter your own choice of command.
//EXIT

Now, if you press a key other than 1, 2, or 3 for the /KEYIN, the
/INPUT line is displayed.

You can also enter information directly into the system at the JCL
level. For example, the /WAIT macro description mentions that you
can set the time for the system clock in the middle of a JCL file.

The following example prompts you to enter the TIME library
command to set the system clock. After you input the time, the /WAIT
macro pauses execution of the JCL file until the clock matches
02:15:00 and then continues execution.

This program runs at 2:15 a.m.

//INPUT Enter the TIME command using HH:MM:55 format

//WATT 82:15:8¢8
DEVICE

FREE

//EXTT

The previous section explained how to create and use execute JCL
files. This section describes some basic functions of the JCL compiler
and shows practical examples of JCL files.

A-12

While an execute JCL file is useful, you need to use the compile
phase of JCL for extra features. These extra features are explained in
four parts:

e Compilation Description and Terms
Conditional Decisions

Substitution Fields

Combining Files

Compilation Description and Terms

You can compile and/or execute any JCL file using the DO library
command. If your JCL file contains only execution comments,
commands, or execution macros, then you can completely skip the
compile phase (using the " =" control character with the DO
command).

If, however, your JCL file contains "tokens” or labels, or must make
logical decisions, then you must compile the file before executing it.

The compile phase reads in the JCL file line by line, checking for
directly executable lines, keyboard responses, and execution macros.
The compile phase also evaluates any compilation statements and
writes a/f resultant lines to a file called SYSTEM/JCL. After the
compile phase completes, control is normally passed to the execution
phase, which executes the SYSTEM/JCL file.

As stated earlier, the JCL works by substituting lines in a file for
keyboard entries. However, when you compile a JCL file, it can
contain more than just a series of executable commands. (After the
compile phase is completed, however, the SYSTEM/JCL file does
contain only executable lines.)

You can include the following statements in a JCL file you intend to
compile:

Directly executable commands (DIR, BASIC, etc.)

Pre-arranged keyboard responses

JCL execution macros (listed in Table 1)

JCL conditional macros (listed in Table 2)

Labels

Another JCL file. When a JCL file "calls” another JCL file, TRSDOS
transfers control to the called file and doesn'’t return control to the
calling file.

We use several terms when discussing JCL compilation. They are:
1. Token

A token is a string of up to 8 alphanumeric characters. You can
use both upper and lower case letters. Note: There is NO
difference between upper and lower case letters for any JCL
macro, token, or label.

A-13

You can use a token (1) as a true/false switch for logical decisions
(see the //IF macro), and (2) as a character string value in substitution
fields (see the SUBSTITUTION FIELDS section).

2. Logical operator
The simple logical operators are:

AND (represented by the ampersand symbol "&")
OR (represented by the plus symbol *+)
NOT (represented by the minus symbol * ")

3. Label

A JCL label is used to define the start of a JCL procedure, which
allows many small JCL procedures to be combined into one large
file. The format for a label is:

@label

The label can be up to 8 alphanumeric characters long.

Table 2/ Conditional Macros

Group Macro
Macro Group Description Macros Description
Compilation /l.Comment Acts like a visual log
Comment of the JCL file because they
are displayed during
compilation.
These comments are not
written to SYSTEM/JCL.
Logical Define con- NF Defines the start of a
Macros ditional conditional block.
"blocks.” //END Defines the end of a
conditional block.
/IELSE Defines the alternative
to a false //IF.
Higher Provide for /SET Gives a token a logical
Order higher condi- true value.
Logical tional logic //RESET Gives a token a logical
Macros statements. false value.
JASSIGN Sets a token’s value to
true and assigns a
character string value
to the token.
Termination HQUIT Aborts JCL compiiing if
Macro an invalid condition is
detected.
Merge //INCLUDE Merges together two or
Macro more JCL files during
compilation.

A-15

Conditional Decisions

Using /AF, /END, /ELSE

The logical compitation macros (/IF, /END, and //ELSE) are used to
establish logical “blocks"” in a JCL file. When a JCL file is being
compiled, these blocks are evaluated as either true or false.

The //IF macro followed by a token determines if the block is true or
false.

To set a token true, specify it on the DO command line. To set a token
false, do NOT specify it on the DO command line.

These JCL macros produce the following results:

1) if tokenis true . .. 2) If token is false . ..
//1F token //1F token
Include these lines. Ignore these lines.
//END //END

3) If token is false, perform the alternative . . .

//1F token

Ignore these lines.
//ELSE

Include these lines.
7/ /END

With this type of logical decision capability, you can create a JCL file
and then pick a course of action by typing in a "DO filespec”
command with different tokens.

Examples
Consider the following JCL file named START/JCL.

START/JCL for program start-up
SET *FF to FORMS/FLT
FILTER *PR «FF
//1F PRY
FORMS (CHARS=89)
//ELSE
FORMS (CHARS=132)
//END

Assume that these are the first lines in a JCL file that begins
execution of an applications program.

To make the //IF PR1 test as true, issue the following DO command:
DO START (PR1) (ENTER

The 80 characters per line mode is selected.

If (PR1) is not specified on the DO command line, then the /IF test is
false and the 132 characters per line is selected.

Using /SET and /RESET

JCL provides the //SET and //RESET macros to reduce the number of
tokens in the DO command line.

One basic use for //SET is to let one token set the value of another.
For example:

//1F K1
//SET P1
//END

This JCL file specifies that if Kl is true, then P1 is set to a true
condition also.

Suppose that the token P2 is already SET and you want to give it a
new value. Consider this example:

//1F KI
//RESET P2
//END

This JCL file specifies that if Kl is true, then P2 is reset to a false
condition.

Consider the JCL file named MENU/JCL:

. MENU/JCL, revision 1
SET *FF TO FORMS/FLT
FILTER *PR *FF

//1F P

//RESET P2

FORMS (CHARS=88)
//ELSE

//SET P2

FORMS (CHARS=132)
//END

If you issue either one of the following commands:

DO MENU (P1)> (ENTER)
DO MENU (P1,P2) (ENTER

the //IF macro tests P1 as true; therefore P2 is reset to false, and the
«FF and 80-character mode are applied.

If you issue either one of the following commands:

DO MENU (ENTER)
DO MENU (P2) (ENTER

the //IF macro tests false so the //ELSE macro sets P2 to true and the
132-character mode is applied.

As previously mentioned, the /SET macro can be used to reduce the
number of tokens that have to be entered on the DO command line.
Consider the following SYSOPT/JCL example:

Establish TRSDOS system options
//1YF ALL
//SET COMM
//SET PR
//SET SET
//SET SRES
//END
//1F KIALL
//SET COMM
//SET SET
//END
//1F COMM
set *cl to com/dvr
setcom (word=8)
//END
//1F PR
set *ff to forms/flt
filter *pr *ff
forms (chars=88)
//END
//1F SET
setki (rate=7)
//END
//1F SRES
system (sysres=2)
system (sysres=3)
system (sysres=18)
//END

This example shows how many different TRSDOS options can be
established with a JCL file. The way it is structured, you can choose
any or all of the options.

If you did not use /SET, you would have to enter four separate
tokens on the DO command line to establish all of the options, as
follows:

DO SYSOPT/JCL (COMM,PR,SET,SRES) (ENTER

If you specify "ALL” in the DO command line, COMM, PR, SET, and
SRES are set to true conditions.

If you specify "KIALL” in the DO command line, COMM and SET are
set to true conditions.

Notice the use of upper and lower case. As stated earlier, either
upper or lower case letters can be used in any JCL macro, token, or
label. This is also true when the line is a TRSDOS command, as are
the lower case lines in this example.

You can improve the readability of a JCL file by using upper case for
macros and lower case for executable lines, such as TRSDOS
commands, or vice versa.

Using /ASSIGN

JCL provides the //ASSIGN macro to set a token’s logical value true,
and to assign a character string value to a token.

The syntax for the /ASSIGN macro is:
//ASSIGN token=character string

character string can consist of up to 32 characters. Any character on
the keyboard is allowed except a double-quotation mark ().

Error Conditions

Any time you use //ASSIGN, there must be at least one character
assigned as a value or the compiling aborts.

Examples

In any of the previous examples that used the /SET macro, the
//ASSIGN macro could have been substituted. The character string
value assigned to the token has no effect on the JCL logic.

In the following example, if the token A is true, the tokens P1, Ki, and
PR are all set to true. This example assigns character string values to
the tokens.

.TEST/JCL

//1F A

//ASSIGN P1=PROGRAM/BAS
//ASSIGN KI=ALL
//ASSIGN PR=88

//END

Using /. Comment and /QUIT

Compilation comments (/. Comment) are not written to the
SYSTEM/JCL file. They are displayed on the screen as they are
encountered during compilation. Thus, they act as a visual status log
of the compile.

The //QUIT macro aborts the compilation stage if the JCL detects an
invalid condition. This macro lets you make sure all needed tokens
are entered before any execution takes place.

A-19

Examples

START/JCL
set *ff to forms/flt
filter *pr *ff
forms (lines=60)
//1F Kl
setki (rate=5)
//ELSE
//. RATE was not set!
//QUIT
//END
//EXIT

If this JCL file is compiled without the token Kl being entered on the
DO command line, the screen display shows:

s/, RATE was not set!
//AUTT

No actual lines are executed from the SYSTEM/JCL file, because the
compile phase was aborted before completion. The compilation
comment tells the operator why the abort took place.

If you substitute /ABORT for /QUIT in the previous example and then
compile the JCL file without the token K, the following lines result:

//. RATE was not set!
START/JCL

setl »ff to forms/fitl

filter *pr *ff

forms (lines=68>

Job aborted

The comment line is displayed as the file is being compiled. However,
since //ABORT is an execution macro, the SYSTEM/JCL file finishes
compiling and then executes until it reaches the /ABORT line! The
//QUIT macro should be used in such a case rather than the
//ABORT.

Substitution Fields

One of the most powerful features of the JCL is its ability to substitute
and concatenate (add together) character strings to create executable
lines.

A substitution field is created by placing pound signs (#) around a
token. When the file is compiled, this substitution token is replaced
with its current value, either assigned on the DO command line or
with the //ASSIGN macro.

A-20

Examples

TEST/JCL
set *ff to forms/flt
filter *xpr x*ff
forms (chars=#C#)
basic
run'#pten
//STOP

This example uses two substitution fields: one in the FORMS
command line representing the number of characters, and one in the
RUN command line.

if you issue the DO command:
DO TEST (C=132,P1=PROGRAM1) (ENTER)
the tines written to the SYSTEM/JCL file are:

TEST/JCL
set *ff to forms/flt
filter *xpr xff
forms (chars=132)
basic
runPROGRAMI"
//STOP

The compile phase substitutes the character string value of the tokens
into the actual command line!

The length of the replacement string does not have to be equal to the
length of the token name between the # signs.

To reduce the number of tokens needed on the DO command line,
and to increase the program options at the same time, use the
//ASSIGN mactro as follows:

TEST/JCL
//ASSIGN c=80
//ASSIGN pl=programl
//1F num2
//ASSIGN ¢=132
//ASSIGN pl=program2
//END
set *ff to forms/flt
filter *pr xff
forms (chars=#C#)
basic
run'taPen
//STOP

A-21

Specifying NUM2 overrides the 80-character printer filter and
PROGRAM1 defaults. The values of C and P1 are automatically set
with the //ASSIGN tokens inside the //IF conditional block.

Another use for substitution fields is replacing drive numbers.

The following example shows how a FORMAT and BACKUP JCL file
can be structured:

FB/JCL, FORMAT with BACKUP
//PAUSE Insert disk to format in drive #D#
format :#D# (name="datal',q=n,ABS)
backup :#S# :#D#
//EXIT

The token D represents the destination drive, and the token S
represents the source drive.

If you enter the command:
DO FB/JCL (5=1,D=2) ENTER)
the system pauses and prompts you to insert a disk in Drive 2.

Press (ENTER) and the JCL file continues. it formats the disk in Drive
2, and then it executes the backup command with Drive 1 as the
source drive and Drive 2 as the destination drive.

The substitution fields can be used in message lines and comments
as well as in executable command lines.

Be careful when you want to display a single “#” in a comment or
message. Consider the following example:

//PAUSE Insert a disk in drive #1

if the JCL file were executed only, this line would be properly
displayed. However, if the JCL. were compiled, an error would occur.
For this line to be properly displayed in a compiled JCL., it would have
to be written as:

//PAUSE Insert a disk in drive ##1

Another practical use for substitution fields is copying password
protected files from one drive to another.

. MOVE/JCL file transfer
copy program! . #P#:8 :#D#
copy programZ.#P#:0 :#D#
copy program3.#P#:0 :#D#
copy programd.#P#:90 :#D#
//EXIT

in this example, a group of files is copied from Drive 0 to a drive
specified in the DO command. Also, you have to supply the proper

A-22

password for the copies to work. If you specify the wrong password,
an error is displayed and the JCL aborts.

Substitution fields can also be concatenated, or added together, to
create new fields. For example:

ADD/ JCL
copy #F#/#E#:8 :1
copy #F1#/#E#:0 :1
//EXIT

This example uses two substitution fields, one for the filename and
one for the extension.

If you issue the DO command:
DO ADD (F=SORT,E=CMD,F1=50RT1) (ENTER)
the following SYSTEM/JCL file results after compiling:

ADD/JCL
copy SORT/CMD:@ :1
copy SORT1/CMD:& :1
//EXIT

As in previous examples, the //IF and /ASSIGN macros could be
used to allow a single token to select the F, F1, and E tokens.

Combining Files

Most of the JCL examples in the previous sections have been very
short. In a practical operating environment, this is often the case.
However, each of these small files is taking up the minimum disk
allocation of one gran and using one directory entry.

To combine small files and save disk space, use the Label feature of
JCL. You can also use the /INCLUDE macro to duplicate a JCL file
inside of another JCL file, without having to retype the lines.

Using /INCLUDE

The /INCLUDE macro is used to merge together two or more JCL
files during the compile phase. The syntax is:

//INCLUDE filespec
filespec is a JCL file.

This command is similar to specifying the filespec in a DO command
line. However, you cannot enter tokens or other information after the
filespec.

If you need to pass tokens to the included program, they will have to
be established in the program that is doing the //INCLUDE.

A-23

Error Conditions

An //INCLUDE macro CANNOT be the last line in a JCL file. If it is, an
“End of File Encountered” error occurs, and the JCL aborts.

Examples

This example shows two JCL files and the results of the compile
phase. The two JCL files are:

TEST1/JCL . TEST2/4CL

comment line 1 . This comment is included
//INCLUDE TEST2

comment line 2
//EXIT

If you issue the command
DO TEST1 (ENTER)

the following SYSTEM/JCL file is produced:

TEST1/JCL

comment line 1

TEST2/J4CL
. This comment is included
. comment line 2
//EXTT

The compiling starts with the file named in the DO command line. As
soon as the //INCLUDE is reached, all lines in the second JCL file are
processed, and then the compiling returns to the rest of the original
file.

There is no limit to the number of non-nested //INCLUDE macros you
can use, other than having enough disk space for the resulting
SYSTEM/JCL file.

Using JCL Labels

The LABEL feature of JCL allows you to permanently merge together
many small JCL procedures into one large file, and then access those
procedures individually. This saves disk space and directory entry
slots.

Examples

TEST/JCL label example
®F IRST

this is the first procedure
//exit
@SECOND
. this is the next procedure
®THIRD

this is the last procedure

A-24

This file contains three labels. To select any procedure, specify the
label on the DO command line.

The following rules determine how much of a labeled JCL file is
included in the compile phase:

1) If no label is specified on the DO command line, all lines from the
beginning of the file up to the first label are compiled.

2) If a label is specified, compiling includes all lines from the specified
label until the next label or the end of the file is reached.

DOQing the TEST/JCL file using the @ FIRST label would write the
comment “. this is the first procedure” and the /EXIT macro to the
SYSTEM/JCL file for execution. Specifying either of the other labels
would include only the appropriate single comment line.

If you compiled the file without specifying a label in the DO command,
only the initial execution comment . TEST/JCL label example” would
be written in SYSTEM/JCL.

There is no limit to the size of a labeled procedure. They can range
from one to as many lines as you can fit on your disk. The only
requirement is that a JCL file containing labels must be compiled.

When you use labels in a JCL file, we recommend that you start the
file with a comment line or some executable line other than a labetl.

Suppose @FIRST is the first line in the following file:

BFIRST
. Print this comment

If you issued a DO command for this file without specifying the
(@FIRST label, the compiling phase would receive the first line, see
that it is a label, and guit. Since the compite is complete, the
SYSTEM/JCL file would be executed! And since nothing was written
to SYSTEM/JCL, its old contents are not erased. In other words,
whatever lines had been compited to the SYSTEM/JCL file from a
previous DO command would now be executed.

Advanced JCL Compiling

The previous section on JCL compiling described the basic uses of
tokens and compitation macros. If you do not understand the JCL
Compiling section, please re-read it. If you actually type in and try the
examples, you will get a better understanding of how to structure a
JCL fite for compiling.

This section describes additional features and shows different ways to
accomplish logical decision branching. These additional features are
explained in four parts:

A-25

Using the Logical Operators
Using Nested /IF Macros

Using Nested /INCLUDE Macros
Using the Special % Symbol

Using the Logical Operators

The logical operators used with the //IF macro (AND, OR, and NOT)

specify the type of logical testing, and they are represented as
follows:

AND — ampersand (&)
OR — plus sign (+)
NOT — minus sign (—)

All previous examples of //IF tested the logical truth or falseness of a

token. You can accomplish more complex and efficient testing by
using the logical operators.

Consider the following series of examples using the tokens A and B:

//1F -A
include ithese lines if A is not specified
//END

By using NOT (~), you can see if a token is false, which provides
an alternative method to select a block of lines for compiling.
//1F A+B

include these lines if A or B is specified
//END

//1F A&B

include these lines if A and B are specified
//END

These examples show how muitiple tokens may be tested in a single
//IF statement. The first example is true if either A OR B is true. The
second example is true only if both A AND B are true.

You can use any combination of logical operators in an //IF statement.
The following rules apply:

® The expressions are evaluated from left to right.
o Do not use parentheses because they abort the JCL compiling.
¢ All logical operators have the same priority.

You can combine the logical operators to test almost any arrangement
of tokens. You can combine the logical operators to set up default
conditions and to check for missing tokens, as the following examples
demonstrate.

CHECK/JCL . CHECK1t1/JCL

//1F -§ //1F -S+-D

//ASSIGN S=0 //. You MUST enter S and D!
//END //GUTT

//1F -D //END

//ASSIGN D=2

//END

The CHECK example tests S and D individually, and assigns them
default values if they were not true (that is, if they were not specified
in the DO command line).

The CHECK1 example is structured so that both S and D must be
true (specified on the DO command line), or the JCL compiling aborts.

Using Nested /IF Macros

By definition, a conditional block begins with an //IF and concludes
with an //END.

When the /IF evaluates true, the lines between the /IF and the /END
or an //ELSE (if one exists) are compiled. It is also possible to include
other /IF - //END blocks within the main conditional block (called
nesting).

The /ELSE macro provides an alternative course of action in case an
//IF evaluates false. It is also possible to have more /IF - (/END
statements following the /ELSE. Refer to the following examples:

TEST/JCL
//1F A
comment 1
//ELSE
//1F B
comment 2
//END (ends the //1F B statement)
//END (ends the //1F A statement)

If A evaluates true, comment 1 is written out, and the /ELSE is
ignored. if A is false, B is tested. The comment 2 is written out only if
B is true. Notice the two /END macros. There must be one /END for
every //iF.

You can document your own JCL files in the same way that we have
documented these examples.

Documenting //END macros increases the readability of the files,
especially when you edit a file that you have created some weeks (or
months) previously.

A-27

//IF A
Comment A
//1F B
Comment B
//1F C
Comment C
//END (ends Third IF)
//END (ends Second IF)
. Comment D
//END (ends First 1F)

It the first //IF is false, all lines up to the corresponding //END are
ignored.

If the first //IF is true, Comment A and Comment D are written to
SYSTEM/JCL.

it //\F B is true, Comment B is also written to SYSTEM/JCL. If B is
false, all lines up to the corresponding //END are ignored.

The only time /IF C is considered is if both A and B test true. f C is
true, Comments A through D are written to SYSTEM/JCL.

Although not shown in the example, you can use the logical operators
when nesting //IFs.

Using Nested //INCLUDE Macros

When you use the /INCLUDE macro, the included file can also
contain another //INCLUDE macro. This is called nesting. The
following rules apply:

e The maximum nest level is five active /INCLUDE macros.
e An //INCLUDE macro cannot be the last line in a JCL file.
Example

The following example uses three files to show how the lines in
nested //INCLUDE files are processed:

// . NEST@/JCL

nested procedure example (Nest 2)
//INCLUDE nestt

this is the end of the primary JCL (Nest 2)
//EXTT

//. NEST1/JCL
this is the first nest (Nest 1)
//INCLUDE nest2
this is the end of the first nest (Nest 1)

/7. NEST2/JCL
this is the second nest (Nest 2)

If you save these JCL files as NESTQAJCL, NEST1/JCL, and
NEST2/JCL and then compile and execute NEST0/JCL, the following
SYSTEM/JCL results:

//. NESTg/JCL
/7. NEST1/JCL
//. NEST2/JCL
nested procedure example (Nest 8)
this is the first nest (Nest 1)
this is the second nest (Nesti 2)
this is the end of the first nest (Nest 1)
this is the end of the primary JCL (Nest)

The //INCLUDE macro can be used to compile a large JCL procedure
from a series of smaller JCL routines. If the finished SYSTEM/JCL file
is a procedure that will be executed many times, you can easily save
it by copying SYSTEM/JCL to a file with another name.

Using the Special % Symbol

The % symbol is used to pass character values (in hex) to the system
as though they came from the keyboard. The syntax is:

%character value
Below are some valid values and their results:

Hex Value Result

09 Position to next tab stop
(every 8 columns)

0A Linefeed

1F Clear screen

The value of any printable character can also be used, although
control characters (characters with a value less than hex 20) are
generally used. (See Appendix C for a list of characters, values, and
actions performed on the video display.)

Examples

You should place the clear screen character at the start of a line. For
example:

%1F//PAUSE Insert disk in drive 1, press (ENTER

clears the screen and displays the JCL line in the top left corner of
the screen.

The tab and linefeed characters, used to position comments or lines
on the screen, should always be placed AFTER the period in the
comment line or the macro in an executable line. For example:

L %89%89 This comment is positioned at the
second tab stop.
//PAUSE %BA%BA%BA This line appears 3 lines down

If you place the character BEFORE the period, TRSDOS does not
recognize it as a comment line and the JCL aborts.

If you place the character AFTER the macro, the //PAUSE is displayed
and the remaining message line is displayed 3 lines lower on the
screen.

Using the tab and linefeed characters in this manner can sometimes
help to improve the readability of the messages displayed during JCL
execution. '

Using TRSDOS JCL To Interface With Applications

Programs

This appendix describes how to use JCL to start up and control your
applications programs.

Two languages are discussed: BASIC and Z-80 assembly.

Interfacing With BASIC

A JCL file is the perfect method to interface between the operating
system and the BASIC language. JCL can be used to create
procedures that require only the inserting of a diskette to start up a
program. Additionally, you can utilize the features of JCL from within a
BASIC program.

Examples

To use a JCL file to initiate an automatic start-up of a BASIC program,
you can use the AUTO library command to execute a JCL file.

Assuming the JCL file is named BAS/JCL, issuing the command:
AUTO DO BAS/JCL (ENTER)

automatically executes the desired BASIC program every time the
computer is booted with the AUTOed system disk.

In order to execute a BASIC program from a JCL file, lay out the JCL
file as follows:

1. Establish any necessary drivers, filters, or other TRSDOS options.

2. Enter BASIC with any necessary parameters (such as memory size
and number of files).

3. RUN the BASIC program.

A-30

4. Terminate the JCL execution with //STOP (which leaves control
with BASIC).

You can also enter a DO command directly from the TRSDOS RHeady
prompt to execute a BASIC program.

To execute a JCL file once you have entered BASIC, the command
format is:

SYSTEM"DO filename"

This command can be typed in directly or entered as a BASIC
program line.

Also, any JCL file called from BASIC should contain the /EXIT
termination macro, so that contro! will return to TRSDOS Ready when
the JCL file is completed.

For example, suppose you want to use the JCL //ALERT macro to
inform you when a lengthy BASIC procedure has completed.
Following the fines containing the BASIC procedure, you could have a
BASIC program line such as:

1666 SYSTEM “DO = ALERT/JCL:@"
which executes the ALERT/JCL file:

Your procedure is complete. Press (ENTER) to
resume.

//ALERT €1,0,7,8)
BASIC
//STQP

When BASIC reaches line 1000, the JCL file ALERT/JCL is executed,
sending a series of repeating tones out the tone generator.

You are notified that your BASIC procedure has completed. Pressing
(ENTER) ends the JCL alert and returns you to BASIC.

There are two important points about this example. First, the comment
line in the ALERT/JCL file is absolutely necessary, as a JCL file
cannot start with an execution macro. Second, the "BASIC” statement
will reload BASIC. If you want a particular program to be loaded and
run, you can place its name on the command line or add the BASIC
commands before the //STOP statement. The //STOP termination
macro must be included to assure that keyboard control remains
within BASIC.

Although the example demonstrates an execute only JCL file, you can
also call compiled JCL procedures from BASIC. You can even
construct a SYSTEM “DO fifespec {(parameters)]” command using
BASIC string substitution.

Any time you want to use a SYSTEM “DO filespec” command from

BASIC to execute another BASIC program, you have to change the

format of the command. To DO these types of JCL files from BASIC,
use the commands:

A-31

SYSTEM [ENTER)
DO filespec [(parameters)I(ENTER)

Using this format for the command assures that a proper exit is made
before the new JCL file is started.

Controlling a BASIC program

In some cases, the prompts in a BASIC program can be answered
with a line from a JCL file. This is true if the program uses the INPUT
or LINEINPUT BASIC statement to take the input.

If the program uses the INKEY$ statement, response has to come
from the keyboard rather than from a JCL file. If the program uses the
proper input method, you can create a JCL for total hands-off
operation as follows:

1. Run through the BASIC program, making a note of every prompt to
be answered.

2. Create a JCL file to enter BASIC and run the program as explained
above in the BAS/JCL example. Leave off the //STOP macro.

3. Add the responses to the prompts as lines in the JCL file.

Using this method provides automatic program execution. Terminating
the JCL file depends on what needs to be done when the application
program has completed.

If you want to run more programs, you could add the proper
RUN“PROGRAM” line to the JCL file, followed by any required
responses to program prompts.

If you want to return to the TREDOS Ready mode, you could end the
file with the //EXIT macro. If you want to return to the BASIC Ready
mode, you could end the file with the /STOP macro.

Interfacing With Z-80 ASSEMBLY

It is very simple to interface an assembly language program with the
DO processor. All programs that utilize the line input handler
(identified as the @KEYIN supervisor call in the Model 4/4P Technical
Reference Manual) are able to accept “keyboard” input from the JCL
file, just as though you typed it in when the program ran.

This gives the capability of pre-arranging the responses to a
program’s requests for input, inserting the responses into the JCL file,
initiating the procedure, then walking away from the machine while it
goes about its business of running the entire job.

Keyboard input normally handled by the single-entry keyboard
routines (@KBD, @KEY, and BASIC’s INKEYS$) continue to be
requested from the keyboard at program run time and do not utilize
the JCL file data for input requests.

Practical Examples Of TRSDOS JCL Files

It is virtually impossible to show all the many uses of JCL files.

We give you two examples of how you can make your day-to-day
TRSDOS operations even more efficient using JCL files.

D)

This example shows how to SYSRES system modules using a JCL
file. The modules to be resided are 2, 3, and 10. These modules have
to be resident in memory to perform a backup by class between two
non-system diskettes in a two-drive system.

The JCL fite to SYSRES these modules may look something like this:

. BURES/JCL - JCL used to SYSRES modules 2, 3,
and 18
SYSTEM (SYSRES=2
SYSTEM (SYSRES=3
SYSTEM (SYSRES=18
end of BURES/JCL

When executed, this JCL file causes the system modules 2, 3, and 10
to reside in high memory. Because this JCL uses no fabels or
compilation macros, the compilation phase can be skipped.

2)
This example shows how to back up a diskette using a JCL fite.

A minimum of three drives are required. Drive 0 must contain a
system diskette with the JCL file. Drive 1 contains the source diskette.
Assume that the source diskette’s name is MYDISK and its master
password is PASSWORD. Also assume that it is 40 track, and double
density. Drive 2 contains the destination diskette.

The JCL file to perform the backup may look something like this:

DUPDISK/JCL -~ Disk duplication JCL
//PAUSE Source in 1, Dest. in 2, (ENTER) when ready
format :2 (name%"mydisk",qwn,abs)
//PAUSE format ok? (ENTER) if yes, (BREAK if no
backup :1 :2
. end of backup - will now restart JCL
do *

The second tine of the JCL causes the computer to pause untit the
ENTER key is pressed. This allows you to insert the proper diskette
into Drives 1 and 2. Once you insert the proper diskettes, press
(ENTER) and the third line of the JCL is executed.

The format line passes the NAME parameter to the format utility. Note
that the diskette name, and diskette password of the destination

A-33

diskette must be an exact match of the source disk. If they do not
exactly match, the JCL aborts.

Also, note that the parameters Q=N and ABS are specified. Both are
necessary. The Q=N parameter causes the computer to use the
default of PASSWORD for the master password, by passing the
“Master Password” prompt. The ABS parameter ensures that no
prompt appears if the destination diskette contains data.

The pause after the format statement allows you to check whether or
not the format is successful. If the destination diskette is properly
formatted, press ENTER to continue the JCL.

After you press (ENTER) in response to the seconds pause, the backup
takes place. When the backup completes, the comment line appears,
and the DO » command executes. The command causes the
SYSTEM/JCL file to execute. Realize that since this is a repeating
JCL, the compilation phase cannot be skipped.

If tracks are locked out during the format, press (BREAK). Pressing
(BREAK) aborts the JCL, and you have to restart the JCL file.

Important: Be aware that if BACKUP or FORMAT is being executed
by a JCL file, the following rules apply:

1. If the backup is mirror image, the source and destination disk Disk
1D’s must be the same or the backup aborts.

2. Backups with the (X) parameter, single-drive backups, and
backups with the (QUERY) parameter are not allowed.

3. Single-drive formats are not allowed.

A-34

Appendix B/ Hardware

The Keyboard Code Map

The keyboard code map shows the code that TRSDOS returns for
each key, in each of the modes: control, shift, unshift, clear and
control, clear and shift, clear and unshift.

returns the code X'AT1’.

A program executing under TRSDOS — for example, BASIC — may
translate some of these codes into other values. Consult the
program’s documentation for details.

(BREAK) Key Handling

The BREAK key (X'80") is handled in different ways, depending on the
settings of three system functions. The table below shows what
happens for each combination of settings.

Break Break Type-
Enabled Vector Ahead
Set Enabied

% N Y If characters are in the type-
ahead buffer, then the buffer is
emptied.”

If the type-ahead buffer is empty,
then a BREAK character (X'80")
is placed in the buffer.”

Y N N A BREAK character (X'80") is
placed in the buffer.

Y Y Y The type-ahead buffer is emptied
of its contents (if any), and
control is transferred to the
address in the BREAK vector
(see @BREAK SVC).*

Y Y N Control is transferred to the
address in the BREAK vector
(see @ BREAK SVC).

N X X No action is taken and
characters in the type-ahead
buffer are not affected.

means that the function is on or enabled.
means that the function is off or disabled
means that the state of the function has no effect

Xz <

A-35

Break is enabled with the SYSTEM (BREAK = ON) command (this is
the default condition).

The break vector is set using the @BREAK SVC (normally off).

Type-ahead is enabled using the SYSTEM (TYPE = ON) command
(this is the default condition).

* Because the (BREAK) key is checked far more frequently than other

another key on the keyboard and yet be detected first.

A-36

a1 1 21]A22 22/A3 3 23/Aa4 4 24{a5 5 25|a6 6 26]A7 7 27|A8 8 28

A9 9 20|ap B t]AA

g ou

= R

B

ov

2A{BD — 3D|80 K ttt
81 31| B2 32|83 33 B84 34| 85 35| 86 3687 37] B8 38 B9 39| 80 30| BA 3A| AD 2D} 80 80
a1 1] 97 17185 ®5] 92 12} 94 14|99 19} 95 15§ 89 99| 8F OF| oo wie #]88 g8l 2
Q w E R T Y seace,_| CLEAR
F1 51| F7 57| €5 45| F2 52] F4 54| F9 soles U ssieo ! aoler O arlro P osoles @ oo 98 181 IF
D1 71| D7 77} c5 65| D2 72| D4 74| D9 79| D5 75| cs 69| CF 6F| Do 78| co 48|88 08]1
81 @1 93 13| 84 @4} g6 96§ 87 @71} 88 98] 8A @Al 88 #8{ 8sc @C|1E 1E| 8D éD
+
T ENTER
CTRL E1A a1 F3S 5354D 44E6F 46E7G 47 E8H 4SEAJ 4AEBK a8 ECL 4aci7e ; 28| 7F 1D
c1 61| D3 73| ca 64] C6 66| C7 67 c8 68| CA 6AfcCB 68} CC 6C | 5E 38| sF oD
9A 1A} a8 18] 83 @3] 96 16] 82 02] 8E oE| 8D op|18 18]1D 1D} 1C 1c 88 [
7 '
SHIFT FA 4 5A] F8 X 58 E3C 43| F6 v 56 E2 B a2| ee N 4| ED M 4D 7B<, 3c| 7D > 3E(7c / 3F SHIFT 98 18
DA 7A| D8 78| c3 63| D6 76| c2 62| CE 6E | cD 6D| 58 2c| 5D 2E|5C 2F 88 98
(1] 88 98| 8A oA |89 09
AD
Ap 2| caps - / -
AQ 20 98 18|9a 1499 19
a8 98]8A 9a|89 09
M~
<@
<
81 81]82 82|83 83
LEGEND:
91 F1 91|92 F2 92{93 F3 93
81 81 |82 82183 83
Clear and Control . ¢ Control
Clear and Left Shift | e ® | Shift 7 8 9
Clear and Unshift . ¢ | Unshift
NOTE: Pressing CONTROL, SHIFT, and 1 Pressing SHIFT and 0 at the same 4 5 6
@ at the same time generates time (or CAPS alone) turns the Codes for these keys
and EOF (end of file) = — X"1C’ CAPS mode on or off, are the same as for
with NZ return flag. the main keyboard.
11 Pressing CONTROL and : at the 1 2 3
Whenever pressing CLEAR, same time causes a screen print.
SHIFT, and another key at the
same time, be sure to use the left 111 Pressing SHIFT and BREAK at
SHIFT key — not the right SHIFT the same time reselects the last [} . ENT
key. drive.

Specifications

Your computer is a ROM/disk-based computer system with one major
part:

e A display console/keyboard unit with two built-in, double-sided,
double-density, floppy disk drives

The operating system software is loaded from ROM or an operating
system disk in Drive @ by a built-in read-only memory (ROM)
"bootstrap” program.

Console

Processor

Your computer is a Z-80A based high-speed microprocessor with 64K
or optional 128K of memory (disk system) or 16K of memory (cassette
system)

The processor receives power-up and reset instructions from ROM.

The computer is compatible with existing Model Iil software.

Sound
t1"he disk system can generate software-controlled tones, one at a
ime.
Video Display
Six Modes
® White on black or green on black (normal)
® Black on white or black on green (reversed)
64 characters by 16 lines Model Il Mode
32 characters by 16 lines Model Il Mode
® 80 characters by 24 lines 4D Mode
® 40 characters by 24 lines 4D Mode

A-39

Displayable Characters
® Full ASCII set
® 64 graphics characters

Keyboard

The keyboard has the standard typewriter keys, numeric keypad, and
three function keys.

Three Modes
e Control
o Shift
e Caps

e Clear

Floppy Disk Drives
Minimum

Two built-in 5-"-inch, double-sided floppy drives (disk system) or zero
drives (cassette system)

Maximum

Two built-in 5-s-inch, double-sided floppy disk drives and two external
5-Ys-inch, floppy drives

Preventive Maintenance Interval

e Typical usage (3,000 power-on hours per year): Every 8,000
power-on hours

¢ Heavy usage (8,000 power-on hours per year): Every 5,000
power-on hours

Required Media
® Double-density double-sided, 5-1/4-inch floppy disks
The Data Transfer Rate is 250K bits per second.

A-40

Power Supply

Power Requirements
e 105-130 VAC, 60 Hz
® 240 VAC, 50 Hz (Australian / United Kingdom)
® 220 VAC, 50 Hz (European)

e Grounded outlet

Maximum Current Drain

® 1.7 Amps

Typical Current Drain

® 1.5 Amps

Operating Temperature
® 55 to 80 degrees Fahrenheit
e 13 to 27 degrees Centigrade

Peripheral Interfaces

Standard

® Floppy disk input/output channel for connection of one or two
external floppy disk drives

e /O bus for connection of hard disk and other peripherals
e Cassette /O jack

Optional

® High-resolution graphics board
e Serial port RS-232C

A-41

Serial Interface

One Port:
® Allows asynchronous or synchronous transmission
e Conforms to the RS-232-C standard

¢ Uses the DB-25 connector on the back of the computer’s
display console

The DB-25 connector pin-outs and signals available are listed below:

Signal Function Pin#
PGND Protective Ground 1
TD Transmit Data 2
RD Receive Data 3
RTS Request to Send 4
CTS Clear to Send 5
DSR Data Set Ready 6
SGND Signal Ground 7
CD Carrier Detect 8
DTR Data Terminal Ready 20
Ri Ring Indicator 22
STDt Secondary Transmit Data 14
SUNt Secondary Unassigned 18
SRTSt Secondary Request to Send 19

1 These signals are not used for secondary functions but are reserved
for future use.
Parallel Interface

® Connection to a line printer via the 34-pin connector on the
bottom of the computer’s display console

e Eight data bits are output in paralle!
® Eight data bits are input
o All fevels are TTL compatible
The paralle! printer pin-outs and signals available are listed below.

NOTE: If a signal name contains an asterisk (*), the signal is
active-fow.

A-42

Signal Function Pin #
STROBE* 1.5 microseconds pulse to clock 1
the data from processor to printer
DATA © Bit @ (Isb) of output data byte 3
DATA 1 Bit 1 of output data byte 5
DATA 2 Bit 2 of output data byte 7
DATA 3 Bit 3 of output data byte 9
DATA 4 Bit 4 of output data byte 11
DATA 5 Bit 5 of output data byte 13
DATA 6 Bit 6 of output data byte 15
DATA 7 Bit 7 {msb) of output data byte 17
BUSY Input to compute from printer, high 21
indicates busy
PAPER Input to computer from printer, high 23
EMPTY indicates no paper — If the printer
doesn't provide this, the signal is
forced low
BUSY* t Inverse of BUSY (Pin 2) 25
FAULT™ Input to computer from printer, low 28
indicates fault (paper empty, ribbon
out, printer off-line, and so on)
GROUND Common signal ground 2,4,6,8,10
12,14,16,
18,20,22,
24,27 31,
33
NC Not connected or not used 19,26,29,
30,32,34

1 Depending on the kind of printer used, this signal may be called
"UNIT SELECT.” See your printer manual for more information.

Communications

For hardwiring two 4D’s without a modem, use Tandy’'s RS-232-C
cables (Cat. Nos. 26-1490, -1491, -1492, -1493) and null modem
adapter {Cat. No. 26-1496).

A-43

Appendix C/ Character Codes

Text, control functions, and graphics are represented in the computer
by codes. The character codes range from zero through 255

Code 0 is a prefix code. It tells the video driver {o display the special
character for codes 1 - 31. These codes are normally treated as
cursor control commands.

Codes 1 through 31 normally represent certain control functions, For
example, code 13 represents a carrage return or “end of line.” These
same codes also represent special display characters. To display the
special character that corresponds to & particular code (1 - 31),
precede the code with a code zera, (Note: Some screen control
characters cannot be entered from the TRSDOS Ready or BASIC
Ready prompts, but can be directed to the screen by programy control,
See the CHRS and ASC functions in the BASIC portion of this
manual.)

Codes 32 through 127 represent the text characters — all those
letters, numbers, and other characters that are commonly used to
represent textual information.

Codes 128 through 191, when output to the video display, represent
64 graphics characters,

Codes 192 through 255, wher oulput to the video display, represent
either space compression codes or special or alternate characters
determined by software. Togaling between these modes is done via
codes 21 and 22.

Code 21 toggles the video driver between space compression codes
and the specialiallernate character set. Code 22 toggles the video
driver between the special character set and the alternate character
set. The selting of the toggle controlled by code 21 determines if the
code 22 toggle will have any effect on what is subsequently displayed.

The following chart illustrates the power-up and first toggle states for
codes 21 and 22:

Code 21 Code 22
Power-up state space compression special

characters characters
First toggle state special/alternate alternate

characters characters

At power-up, codes in the range 192 to 255 will produce one or more
spaces (space compression mode.) From this point, you can enter the
special character set by ouwtputting a code 21 to the display. You can
then enter the alternate character set by oulputling a code 22 to the
display. To swiich back to the special set, output ancther code 22. To
switch back o space compression codes from either the special or
alternate character set, oulput a code 21,

When you are in space compression mode, outputting a code 22 still
toggles between special and alternate character sets, even though it
does not affect the characters subsequently displayed. Any characters
in the range 192-255 that are already on the display will toggle
between special and alternate character sets each time a code 22 is
received.

Note: Special and alternate characters are not available if reverse
video (code 18) is enabled.

ASCII Character Set

Code
Dec. Hex.
0 00
1 0t
2 02
3 03
4 04
5 05
6 06
7 07
8 08
9 09
10 0A
11 0B
12 0C
13 0D
14 QE
15 QF

ASCII

Abbrev. Keyboard

NUL

SOH
STX

ETX

EOT
ENQ
ACK
BEL

BS

HT

LF

vT

FF
CR

SO
Sl

CTRL @

CTRL A
CTRL B
CTRLC
CTRL D
CTRL E
CTRL F
CTRL G

BACKSPACE
or (=)
or CTRL H

=)
or CTRL |

&)

or CTRL J
®

or CTRL K
CTRL L

ENTER
or CTRL M

CTRL N
CTRLO

Video Display

Next character is treated

as displayable, if in the range
1 - 31, a special character is
displayed (see list of special
characters later in this
Appendix)

Backspace and erase

Move cursor to the next tab stop
(located every 8 columns)

Move cursor to start of next line

Move cursor to start of next line

Cursor on

Cursor off

A-46

Code ASCI

Dec. Hex. Abbrev. Keyboard Video Display
16 10 DLE CTRL P Enable reverse video and set
high bit routine on*
17 11 DC1 CTRL Q Set high bit routine off*

*

18 12 DC2 CTRLR
19 13 DC3 CTRLS
20 14 DC4 CTRLT

21 15 NAK CTRL U Swap space compression/
special characters

22 16 SYN CTRLV Swap special/alternate characters
23 17 ETB CTRL W Set to 40 characters per line
24 18 CAN SHIFT Backspace without erasing
BACKSPACE
or SHIFT (=)
or CTRL X
25 19 EM SHIFT (=) Advance cursor
or CTRLY
26 1A SUB SHIFT (D) Move cursor down
or CTRL Z
27 1B ESC SHIFT (1) Move cursor up
or CTRL ,
28 1C FS CTRL/ Move cursor to upper left corner.

Disable reverse video and set
high bit routine off.”
Set to 80 characters per line.

29 1D GS CTRL ENTER Erase line and start over
or CTRL .

30 1E RS CTRL ; Erase to end of line
31 1F VS SHIFT CLEAR Erase to end of display
32 20 SPA SPACE BAR (blank)

33 21 ! !
34 22 b "
35 23 # #
36 24 $ $

When the high bit routine is on, characters 20 - 127 are converted to
characters 148 - 255. When reverse video is enabled, characters
128 - 191 are displayed as standard ASCH characters in reverse
video.

A-47

Keyboard

0

o

o

I3

fs2)

[es]

[en]

Video Display

[o> TS TR “NU s B]

W o o~

?
(a

A

YA -7 (codes 65 - §0) are shifted functions. Hold down GHIFT and
-

then pr

pre

©

e B

$ [

s the desired key. If the

3 lock is enabled, you need not

A-48

Cade

Dec. Hex Keyboard Video Display
66 42 B B
687 43 C C
68 44 D D
69 45 = E
70 46 F F
71 47 G G
72 48 H H
73 49 |

74 4A J J
75 4B K K
76 4C L. L
77 4D M M
78 4E N N
79 4F 0] O
80 50 P P
81 51 Q Q
82 52 R R
83 53 S S
84 54 T T
85 55 u u
86 56 \ \
87 57 W W
88 58 X X
89 59 Y Y
90 5A z z
91 5B CLEAR , [
92 5C CLEAR/ \
93 5D CLEAR.]
94 5E CLEAR ;)
95 5F CLEAR ENTER —
96 60 SHIFT @ ‘

A-49

Dec.

97

98

99
100
101
102
103
104
105
106
107
108
109
110
1
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127

Code
Hex

61

62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71

72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

ASCIl
Abbrev.

DEL

Keyboard Video Display
A a
B b
C c
D d
E e
F f
G g
H h
| i
J J
K K
L L
M m
N n
0] o
P p
Q q
R r
S s
T t
U u
\ v
w w
X X
Y y
z z
CLEAR SHIFT, {
CLEAR SHIFT / |
CLEAR SHIFT . }
CLEAR SHIFT ; N

CLEAR SHIFT ENTER

H

Extended (non-ASCII) Character Set

Code
Dec. Hex
128 80
129 81
130 82
131 83
132 84
133 85
134 86
135 87
136 88
137 89
138 8A
139 8B
149 8C
141 8D
142 8E
143 8F
144 90
145 91
146 92
147 93
148 94
149 95
150 96
151 97
152 98

ASCI
Keyboard

BREAK

CLEAR CTRL A
or F1

CLEAR CTRLB
or F2

CLEAR CTRLC
or F3

CLEAR CTRL D
CLEAR CTRL E
CLEAR CTRLF
CLEAR CTRL G
CLEAR CTRL H
CLEAR CTRL |

CLEAR CTRL J
CLEAR CTRLK
CLEAR CTRL L
CLEAR CTRL M
CLEAR CTRL N
CLEAR CTRL O
CLEAR CTRLP

CLEAR CTRL Q
or SHIFT F1

CLEAR CTRLR
or SHIFT F2

CLEAR CTRL S
or SHIFT F3

CLEARCTRLT
CLEAR CTRL U
CLEAR CTRL YV
CLEAR CTRL W
CLEAR CTRL X

Video Display

See Special
Character Table

A-51

Code ASBCH
Dec. Hex Keyboard Video Display

153 99 CLEAR CTRLY See Special
Character Table

154 9A CLEARCTRL Z
155 9B CLEAR SHIFT (1) !

156 9C
157 8D
158 9E
159 oF

160 AD CLEAR SPACE

161 Al CLEAR SHIFT 1
162 A2 CLEAR SHIFT 2
183 A3 CLEAR SHIFT 3
164 A4 CLEAR SHIFT 4
165 A5 CLEAR SHIFT 5
166 A8 CLEAR SHIFT 6
167 A7 CLEAR SHIFT 7
168 A8 CLEAR SHIFT 8
169 A9 CLEAR SHIFT 9
170 AA CLEAR SHIFT :

171 AB
172 AC
173 AD CLEAR -
174 AE
175 AF

176 B0 CLEAR @
177 B1 CLEAR 1
178 B2 CLEAR 2
179 B3 CLEAR 3
180 B4 CLEAR 4
181 B5 CLEAR 5
182 B6 CLEAR 6

A-52

Code ASCH
Dec. Hex Keyboard Video Display

183 B7 CLEAR 7 See Special
Character Table

184 B8 CLEAR 8
185 B9 CLEAR 9
186 BA CLEAR:

187 BB !
188 BC
189 BD CLEAR SHIFT - "
190 BE
191 BF

192 Co CLEAR @~

193 C1 CLEAR A ™ !
194 C2 CLEARB ™

195 C8 CLEARC ™

196 C4 CLEAR D ™

197 C5 CLEARE ™

198 C6 CLEARF ™

199 C7 CLEARG ™

200 Cs8 CLEARH™

201 C9 CLEAR | ™

202 CA CLEARJ ™

203 CB CLEAR K™

204 CC CLEAR L™ !
205 CD CLEAR M ™

206 CE CLEARN™ "
207 CF CLEAR O™

208 Do CLEAR P ™

209 D1 CLEAR Q™ N
210 D2 CLEARR™ "

* Empties the type-ahead buffer.
**Used by Keystroke Muiltiple, if KSM is active.

Code ASCII

Dec. Hex Keyboard Video Display

211 D3 CLEARS™ See Special
Character Table

212 D4 CLEART ™ "

213 D5 CLEAR U™ "

214 D6 CLEARV™ !

215 D7 CLEARW ™ "

216 D8 CLEARX ™ i

217 D9 CLEARY ™ !

218 DA CLEARZ™ "

219 DB "
220 DC !
221 DD !
222 DE !
223 DF !
224 E0 CLEAR SHIFT @ !
225 Et CLEAR SHIFT A "
226 E2 CLEAR SHIFT B "
227 E3 CLEARSHIFT C N
228 E4 CLEARSHIFTD "

** Used by Keystroke Multiply, if KSM is active.

A-54

Code
Dec.

229

230

231

232

233

234

235

236

237

238

2139

240

241

242

243

244

245

246

247

Hex

ES

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

Fo

F1

F2

F3

Fa4

F5

F6

F7

ASCIi
Keyboard

CLEAR SHIFT E

CLEAR SHIFT F
CLEAR SHIFT G
CLEAR SHIFT H
CLEAR SHIFT |

CLEAR SHIFT J
CLEAR SHIFT K
CLEAR SHIFT L
CLEAR SHIFT M
CLEAR SHIFT N
CLEAR SHIFT O
CLEAR SHIFT P
CLEAR SHIFT Q
CLEAR SHIFT R
CLEAR SHIFT S
CLEAR SHIFT T
CLEAR SHIFT U
CLEAR SHIFT V

CLEAR SHIFT W

Video Display

See Special
Character Table

A-55

Code

Dec.

248

249

250

152

253

254

255

Hex

F8

Fo

FA

FB

FC

FD

FE

FF

ASCH
Keyboard Video Display
CLEAR SHIFT X See Special

Character Table

CLEAR SHIFT Y

CLEAR SHIFT Z

A-56

¢ 18

-+
- »mﬁ
i

Lie20

Special Characters (0-31, 192-255)

24

192

200

17

25

193

201

26

194

202

"

19

27

195

203

12

20

28

196

204

13

21

29

197

205

22

30

198

206

15

23

31

199

207

216 217 218 219 220 221 222 223

L]

o
L

224 225 226 227 228 229 230 231

232 233 234 235 236 237 238

240 241 242 243 244 245 246 247

248 249 250 251 252 254 255

Appendix D/ Error Messages and
Problems

In Case Of Difficulty

Your TRSDOS operating system was designed and tested to provide
you with trouble-free operation. If you do experience problems, there
is a good chance that something other than the TRSDOS system is at
fault. This section discusses some of the most common user
problems, and suggests general cures for these problems.

Problem 1 ... The system seems to access the wrong disk drives, or
cannot read the diskettes.

If you have trouble reading Model | and [l TRSDOS diskettes,
refer to the REPAIR and CONV Utilities. Those sections explain
how to make these types of disks readable.

If your system seems to access the wrong disk, reset your
computer. You may have selected some combination of options
that are preventing the system from functioning properly.

Remember that when you specify a drive number, you are
specifying a logical drive number which, based on your system’s
configuration, may point at physical drives in another order. If you
have SYSGENed these settings, you may have to hold CLEAR)
down while you reset your computer. This insures that all drives
are in their default state.

Problem 2 . .. RS-232-C communications do not work, or function
incorrectly.

If you experience RS-232-C problems, the first thing you should
do is to make sure both “ends” are operating with the same
RS-232-C parameters (baud rate, word length, stop bits, and
parity). If these parameters are not the same at each end, the
data sent and received appears scrambled.

Some hardware, such as serial printers, require “handshaking”

when running above a certain baud rate. It may be necessary to
hook the hardware’s handshake line (such as the BUSY line) to
an appropriate RS-232-C lead, such as CTS.

Problem 3 ... Random system crashes, recurring disk /O errors,
system lock-up, and other random glitches keep happening.

If you encounter these types of problems, the first thing to check
is the cable connections between the TRS-80 and the
peripherals.

If you experience constant difficulty in disk read/write operations,
it is possible that the disk drive heads need cleaning. There are
kits available at your Radio Shack store to clean disk heads, or
you may wish to have the disk drive serviced at a repair facility. If
you need to frequently clean the disk heads, you might be using
some defective disk media. Check the diskettes for any obvious
signs of flaking or excess wear, and dispose of any that appear

A-61

Error Messages

even marginal. Tobacco smoke and other airborne contaminants
can build up on disk heads, and can cause read/write problems.
Disk drives in “dirty" locations may need to have their heads
cleaned as often as once a week.

One common and often overlooked cause of random-type
problems is static electricity. In areas of low humidity, static
electricity is present, even if actual static discharges are not felt
by the computer operator. Be aware that static discharges can
cause system glitches, as well as physically damage computer
hardware and disk media.

if the computer displays one of the messages listed in this appendix,
an operating system error occurred. Any other error message refers to
an application program etror, and you should see your application
program manual for an explanation.

When an error message is displayed:

® Look up operating system errors below and take any
recommended actions. (See your application program manual
for exptanations of application program errors.)

® Try using other diskettes.

® Reset the computer and try the operation again.
® Check all the power connections.

® Check all interconnections.

® Remove all diskettes from drives, turn off the computer, wait
15 seconds, and turn it on again.

e if you try all these remedies and still get an etror message,
contact a Radio Shack Service Center.

NOTE: If there is more than one thing wrong, the computer might wait
untit you correct the first error before displaying the second
error message.

This list of error messages is alphabetical, with the decimal and
hexadecimal error numbers in parentheses. Following it is a quick
reference list of the messages arranged in numerical order.

TRSDOS Error Messages

Attempted to re

a (Error 7, X'07')

In a system that supports a "deleted record” data address mark, an
attempt was made to read a deleted sector. TRSDOS currently does
not use the deleted sector data address mark. Check for an error in
your application program.

Attempled to re¢ s dete record (Error 6, X'067)

An attempt was made to read a directory cylinder sector without using
the directory read routines. Directory cylinder sectors are written with
a data address mark that differs from the data sector’s data address
mark. Check for an error in your application program.

i (Error 5, X'05')

The sector number for the read operation is not on the cylinder being
referenced. Either the disk is flawed, you requested an incorrect
number, or the cylinder is improperly formatted. Try the operation
again. If it fails, use a different disk. Reformatting the old disk should
lock out the flaw.

Detber record ned found during ¢

Dietter rocord not found during write (Error 13, X'0D)

The sector number requested for the write operation cannot be found
on the cylinder being referenced. Either the disk is flawed, you
requested an incorrect number, or the cylinder is improperly
formatted. Try the operation again. {f it fails use another disk.

ioe in use (Error 89, X'27)

A request was made to REMOVE a device (delete it from the Device
Control Block tables) while it was in use. RESET the device in use
before removing it.

Device not available (Error 8, X'08°)

A reference was made for a logical device that cannot be found in the
Device Controt Block. Probably, your device specification was wrong
or the device peripheral was not ready. Use the DEVICE command
with the (B) parameter to display all devices available to the system.

Directory full — can’t extend file (Error 30, X'1E")

A file has all extent fields of its last directory record in use and must
find a spare directory slot but none is availabie. (See the "Directory
Records” section.) Copy the disk’s files to a newly formatted diskette
to reduce fite fragmentation. You may use backup by class or backup
reconstruct to reduce fragmentation.

A-63

Directory read srror (Error 17, X'11°)

A disk error occurred during a directory read. The problem may be
media, hardware, or program failure. Move the disk to another drive
and try the operation again.

Directory write error (Error 18, X'12°)

A disk error occurred during a directory write to disk. The directory
may no longer be reliable. If the problem recurs, use a different
diskette.

Disk space full (Error 27, X'1B')

While a file was being written, all available disk space was used. The
disk contains only a partial copy of the file. Write the file to a diskette
that has more available space. Then, REMOVE the partial copy to
recover disk space.

End of file encountered (Error 28, X'1C)

You tried to read past the end of file pointer. Use the DIR command to
check the size of the file. This error also occurs when you use the

@ PEOF supervisor call to successfully position to the end of a file.
Check for an error in your application program.

Extended error (Error 63)

An error has occurred and the extended error code is in the HL
register pair.

File access denied (Error 25, X'19°)

You specified a password for a file that is not password protected or
you specified the wrong password for a file that is password
protected.

File already open (Error 41, X'29')

You tried to open a file for UPDATE level or higher, and the file
already is open with this access level or higher. This forces a change
to READ access protection. Use the RESET library command to close
the file.

File not in directory (Error 24, X'18')

Check the spelling of the filespec. Use the DIR command to see if the
file is on the disk.

File niot open (Error 38, X'26")

You requested an /O operation on an unopened file. Open the file
before access.

A-64

GAT read error (Error 20, X'14")

A disk error occurred during the reading of the Granule Allocation
Table. The problem may be media, hardware, or program failure.
Move the diskette to another drive and try the operation again.
GAT write error (Error 21, X'15%)

A disk error occurred during the writing of the Granule Allocation
Table. The GAT may no longer be reliable. If the problem recurs, use
a different drive or different diskette.

HIT read error (Error 22, X'16)

A disk error occurred during the reading of the Hash Index Table. The
problem may be media, hardware, or program failure. Move the
diskette to another drive and try the operation again.

HIT write error (Error 23, X'17°)

The Hash Index Table may no longer be reliable. If the problem
recurs, try the operation again, using a different drive. If it still fails,
use a different disk.

Hlegel access attempted to protected file (Error 37, X'25')

The USER password was given for access to a file, but the requested
access required the OWNER password. (See the ATTRIB command.)
Another cause is an attempt to write to a write-protected disk or an
already-open file.

fllegul drive number (Error 32, X'20°)

The specified disk drive is not included in your system or is not ready
for access (no diskette, non-TRSDOS Version 6 diskette, drive door
open, and so on). See the DEVICE command.

egal file name (Error 19, X'13°)

The specified filespec does not meet TRSDOS filespec requirements.
See Chapter 1 for proper filespec syntax.

lllegul logical file mumber (Error 16, X'10°)

Your program probably has altered the File Control Block improperly.
Check for an error in your application program.

Logd file formaot error (Error 34, X'22°)

An attempt was made to load a file that cannot be loaded by
TRSDOS. The file was probably a data file or a BAS!C program file.

A-65

Lost de

o churing read (Error 3, X'037)

Information was not transferred in the time allotted; therefore, it was
lost. Try the operation again, using a different drive. if it still fails, use
a different disk.

Lost data during write (Error 11, X'0B’)

Information was not transferred in the time allotted; therefore, it was
lost. Try the operation again, using a different drive. if it still fails, use
a different disk.

LRL open foult (Error 42, X'24")

The logical record length specified when the file was opened is
different than the LRL used when the file was created. COPY the file
to another file that has the specified LRL.

o device space available (Error 33, X'21%)

You tried to SET a driver or filter and all of the Device Control Blocks
were in use. Use the DEVICE command to see if any non-system
devices can be removed to provide more space.

No directory speee available (Error 26, X'1A")

You tried to open a new file and no space was left in the directory.
Use a different disk or REMOVE some files you no longer need.

No #eror (Error 8)

The @ ERROR supervisor call was called without any error condition
being detected. A return code of zero indicates no error. Check for an
error in your application program.

Parameter srror (Error 44 X'2C)

An error occurred while executing a command line or utility because a
parameter that does not exist was specified. Check the spelling of the
parameter name, value, or abbreviation.

Parity error during header sead (Error 1, X'01°)

During a sector I/0 request, the system could not read the sector
header successfully. If this error occurs repeatedly, the problem is
probably media or hardware failure. Try the operation again, using a
different drive or diskette.

Prerity ervor during header write (Error 9, X'09°)

During a sector write, the system could not write the sector header

satisfactorily. If this error occurs repeatedly, the problem is probably
media or hardware failure. Try the operation again, using a different
drive or diskette.

A-66

Pority ervor during read (Error 4, X'04")

An error occurred during a sector read. lts probable cause is media
failure or a dirty or faulty disk drive. Try the operation again, using a
different drive or diskette.

Perity error during write (Error 12, X'0C")

An error occurred during a sector write operation. Its probable cause
is media failure or a dirty or faulty disk drive. Try the operation again,
using a different drive or diskette.

Progroam not found (Error 31, X'1F')

The file cannot be loaded because it is not in the directory. Either the
filespec was misspelled or the disk that contains the file was not
loaded.

Protected system device (Error 40, X'28)

You cannot REMOVE any of the following devices: =K1, *DO, PR,
xJL, =8I, *80.

Record number out of range (Error 29, X'1D')

A request to read a record within a random access file provided a
record number that was beyond the end of the file. Correct the record
number or try again using another copy of the file.

See ror during read (Error 2, X'02')

During a read sector disk /O request, the cylinder that should contain
the sector was not found within the time allotted. (The time is set by
the step rate specified in the Drive Code Table.) Either the cylinder is
not formatted or it is no longer readable or the step rate is too low for
the hardware to respond. You can set an appropriate step rate using
the SYSTEM library command. The problem may also be caused by
media or hardware failure. In this case, try the operation again, using
a different drive or diskette.

Seek error du

ngr write (Error 16, X'0A")

During a sector write, the cylinder that should contain the sector was
not found within the time allotted. (The time is set by the step rate
specified in the Drive Code Table.) Either the cylinder is not formatted
or it is no longer readable, or the step rate is too low for the hardware
to respond. You can set an appropriate step rate using the SYSTEM
library command. The problem may also be caused by media or
hardware failure. In this case, try the operation again, using a different
drive or diskette.

— Unknown error code

The @ ERROR supervisor call was called with an error number that is
not defined. Check for an error in your application program.

Write fault on disk drive (Error 14, X'0E")

An error occurred during a write operation. This probably indicates a
hardware problem. Try a different diskette or drive. if the probiem
continues, contact a Radio Shack Service Center.

Write protected disk (Error 15, X'0F")

Remove the write-protect tab, if the diskette has one. If it does not,
use the DEVICE command to see if the drive is set as write protected.
if it is, you can use the SYSTEM command with the (WP = OFF)
parameter to write enable the drive. [f the problem recurs, check the
drive connections on the external drives, even if the error is occurring
on an internal drive. Or, use a different drive or diskette.

TRSDOS ERROR MESSAGES

Decimal Hex Message
0 X000 No Error
1 Xor Parity error during header read
2 X02 Seek error during read
3 X03 Lost data during read
4 X04 Parity error during read
5 X'05 Data record not found during read
6 X086’ Attempted to read system data record
7 Xo7 Attempted to read locked deleted data record
8 X088’ Device not avallable
9 X'09 Parity error during header write
10 X0A Seek error during write
11 xXoB’ Lost data during write
12 Xoc Parity error during write
13 Xop Data record not found during write
14 X'0F Write fault on disk drive
15 X0F Write protected disk
16 halil Hegal logical file number
17 X111 Directory read emor
18 X112 Directory write error
19 X113 tlegal file name
20 X114’ GAT read error
21 X158 GAT write error
22 X116’ HIT read error
23 X117 HIT write error
24 X118’ Fite not in directory
25 X119 File access denied
26 XA Full or write protected disk
27 X1B Disk space full
28 X1C End of file encountered
29 X1 Record number out of range
30 X1E Directory full -— can't extend file
31 X1F Prograrm not found
32 X2 tlegal drive number
33 Xav No device space available
34 X2z Load file format error
37 X'25’ llegal access attempted 1o protected file
38 X226’ File not open
39 xXar Device in use
40 X228’ Protected system device
41 X29’ File already open
42 X2A LRL open fault
43 X'2B’ SVC parameter error
44 Xz2c Parameter error
63 X'3F Extended error

Unknown error code

BASIC Error Codes and Messages

Number

1

Message
MERT without FOR

A variable in a NEXT statement does not
correspond to any previously executed FOR
statement variable.

Syntax error

BASIC encountered a line that contains an
incorrect sequence of characters (such as
unmatched parenthesis, misspelled
statement, incorrect punctuation, etc.). BASIC
automatically enters the edit mode at the line
that caused the error.

RETURN without GOSUR
BASIC encountered a RETURN statement for

which there is no matching GOSUB
statement.

Out of DATA

BASIC encountered a READ statement, but
no DATA statements with unread items remain
in the program.

fllegal tunction call

A parameter that is out of range was passed
to a math or string function. An FC error may
also occur as the result of:

a. A negative or unreasonably large
subscript.

b. A negative or zero argument with LOG.
¢. A negative argument to SQR.

d. A negative mantissa with a noninteger
exponent.

e. A call to a USR function for which the
starting address has not yet been given.

f. Animproper argument to MID$, LEFTS,
RIGHTS, PEEK, POKE, TAB, SPC,
STRINGS, SPACES, INSTR, or
ON...GOTO.

A-70

10

11

12

COrwerflow

The result of a calculation was too large to be
represented in BASIC numeric format. If
underflow occurs, the result is zero and
execution continues without an error.

QOut of memory

A program is too large, or has too many FOR
loops or GOSUBs, too many variables, or
expressions that are too complicated.

Undefined line number

A nonexistent line was referenced in a GOTO,
GOSUB, IF ... THEN ... ELSE, or DELETE
statement.

Subsoript out of range
] &

An array element was referenced either with
a subscript that is outside the dimensions of
the array, or with the wrong number of
subscripts.

Dupliceute Detinition

Two DIM statements were given for the same
array, or a DIM statement was given for an
array after the default dimension of 10 has
been established for that array.

Division by zero

An expression includes division by zero, or
the operation of involution results in zero
being raised to a negative power. BASIC
supplies machine infinity with the sign of the
numerator as the result of the division, or it
supplies positive machine infinity as the resuit
of the involution. Execution then continues.

Hlegal direct

A statement that is illegal in direct mode was
entered as a direct mode command.

Type mismeteh

A string variable name was assigned a
numeric value or vice versa. A numeric
function was given a string argument or vice
versa.

14

15

16

17

18

19

20

21

22

23

Out of string spuce

String variables have caused BASIC to
exceed the amount of free memory
remaining. BASIC allocates string space
dynamically, until it runs out of memory.

String too long

An attempt was made to create a string more
than 255 characters long.

String formula too complex

A string expression is too long or too
complex. The expression should be broken
into smaller expressions.

Can’t continue

An attempt was made to continue a program
that:

a. Has halted due to an error.

b. Has been modified during a break in
execution.

c. Does not exist.
Undefined user function

A USR function was called before providing a
function definition (DEF statement).

No RESUME

An error-handling routine was entered without
a matching RESUME statement.

BESUME without error

A RESUME statement was encountered prior
to an error-handling routine.

Unprintable error

An error message is not available for the
error that occurred.

Missing operand

An expression contains an operator with no
operand.

Line buffer overflow

An attempt was made to input a line with too
many characters.

26 FOR without NEXT

A FOR statement was encountered without a
matching NEXT.

29 WHILE without WEND

A WHILE statement does not have a
matching WEND.

30 WEND without WHILE

A WEND statement was encountered without
a matching WHILE.

Disk Errors

50 FIELD overflow

A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a direct-access file.

51 Internal error

An internal malfunction has occurred in
BASIC. Report to Radio Shack the conditions
under which the message appeared.

52 Bad file number

A statement or command references a file
with a buffer number that is not OPEN or is
out of the range of file numbers specified at
initialization.

53 File not found

A LOAD, KILL, or OPEN statement
references a file that does not exist on the
current disk.

54 Bad file mode

An attempt was made to use PUT, GET, or
LOF with a sequential file, to LOAD a direct
file, or to execute an OPEN statement with a
file mode other than I, O, R, E or D.

55 File already open

An OPEN statement for sequential output was
issued for a file that is already open; or a
KILL statement was given for a file that is
open.

A-73

57

58

61

82

63

64

66

87

68

Device 17O ervor

An Input/Output error occurred. This is a fatal
error; the operating system cannot recover
from it.

File already ex
The filespec specified in a NAME statement is
identical to a filespec already in use on the
disk.

Disk foll

All disk storage space is in use.

Input post end

An INPUT statement was executed after all

the data in the file had been INPUT, or for a
null (empty) file. To avoid this error, use the

EOF function to detect the end-of-file.

Bod record number

In a PUT or GET statement, the record
number is either greater than the maximum
allowed (65,535) or equal to zero.

Bad tile noame

An illegal filespec (file name) was used with a
LOAD, SAVE, KILL, or OPEN statement (for
example, a filespec with too many
characters).

Direct statement in file

A direct statement was encountered while
LOADing an ASCll-format file. The LOAD is
terminated.

Too many files

An attempt was made to create a new file
(using SAVE or OPEN) when all directory
entries are full.

Disk write pro

The drive number you specified is
write-protected. Either the write-protect notch
is covered on the diskette or the diskette was
write-protected with the TRSDOS SYSTEM
{(DRIVE =n,WP) command.

69

70

Fi

The file you attempted to access is password
protected. You must specify the exact
password to gain access to the file.

d Bboried

The command specified in a SYSTEM
statement was aborted. You either pressed
(BREAK) during the execution of a library
command or tried to execute a program or
utility. Only library commands can be
executed with the SYSTEM statement.

P .
e 3T REEt

A-75

Appendix E/ Converting Model III BASIC
Programs to Model 4 Mode

You can run a Model lll Basic applications program on your computer.
However, you may need to make a few changes to the program. The
differences between Model Il and Model 4 BASIC are listed below.

1.

ROM Subroutines. Model 1ll BASIC is a ROM- and RAM-based
language. Model 4 BASIC is strictly a RAM language; therefore, it
cannot access any of the Model Iil's ROM subroutines.

. Disk Files. Model 4 BASIC does not provide cassette support. It

is exclusively a "disk system”, that is, you can only use it with
floppy diskettes or with a hard disk system. If you have learned
BASIC through Getting Started with TRS-80 BASIC, or have never
worked with a disk system before, read about “Disk Files” in
Chapter 5. This chapter explains how you can store and access
data on disk. You also need to read Chapter 1, "Sample
Session”, which describes how to load disk BASIC and how to
save a program on disk.

. Characters per Line. Both BASICs allow you to type up to 255

characters per line. However, there is a slight difference. With
Model 4 BASIC, you can type up to 249 characters per line. The
other six characters are reserved for the line number and the
space following the line number. With Model 1ll BASIC, you can
type up to 240 characters in the command mode, and add the
extra 15 characters in the edit mode.

. Variable Names. Model Il BASIC recognizes only the first two

letters of a variable name; Model 4 BASIC allows variable names
of up to 40 characters, all of which are significant.

. Converting to Integers. In converting a single- or double-

precision number to integer value, Model |l BASIC truncates the
number; Model 4 BASIC rounds the number. This difference in
conversions also affects assignment statements and function or
statement evaluations. For example, if you type 1% = 2.5, Model
11 BASIC converts 2.5 to 2; Model 4 BASIC converts it to 3. If you
type TAB(4.5), Model Ill BASIC moves to the fourth tab position;
Model 4 BASIC moves to the fifth tab position.

If you enter a number as a constant in response to a command
that calls for an integer, and the number is out of integer range,
BASIC converts it to single or double precision. When the number
is printed, it appears with a type-declaration tag at the end.

. Print Width. In Model Ill mode, the screen displays up to 64

characters horizontally. In Model 4 mode, it displays up to 80
characters horizontally.

10.

1L

12.

18.

14.

. Memory Addresses and /O Ports. ROM and RAM locations that

are used in some Model Il BASIC programs are unavailable in
Model 4 mode. See the Model 4/4P Technical Reference Manual
for information on the location of ROM routines. (There are no
ROM routines in Model 4 mode.)

Additional I/O ports are available in the Model 4 hardware. Some
of the Model IlI ports perform additional functions, as well. See
the Model 4/4P Technical Reference Manual.

. BASIC Keywords. The following Model |ll BASIC keywords are

not supported by Model 4 BASIC: CSAVE, CLOAD, POINT,
CLOCK, CMD, POSN, RENAME, and VERIFY. In Model 4
BASIC, the SYSTEM statement performs some of the same
functions as the CMD statement in MODEL Il BASIC.

. Reserved Words. Model 4 BASIC requires that all reserved

words be delimited by spaces. Only those characters which
may be part of the keyword's syntax can be typed immediately
after or before the keyword. For all other characters, leave a
space between the keyword and the character. (For example, you
cannot type DEFUSR; you must leave a space between DEF and
USR.) Appendix F includes a listing of Reserved Words.

Error Messages. Model 4 BASIC's error codes, character codes,
and internal codes for BASIC keywords are different than Model
Il BASIC's codes. See the appendices for more information.

String Space. Model 4 BASIC allocates string space dynamically;
you do not need to allocate string space with the CLEAR
statement. Instead, use CLEAR to set the maximum memory
location BASIC may access and the amount of stack space. For
more information, see CLEAR in Chapter 7.

Printing Single and Double-Precision Numbers. The rules for
printing single and double-precision numbers are different. For
more information, see PRINT in Chapter 7.

Division by Zero. Contrary to Model Il BASIC, Model 4 BASIC
does not produce a fatal error if it encounters division by zero or
overfiow. Instead, it prints an error message and continues
executing your program.

FOR . .. NEXT. Model 4 BASIC skips the body of a

FOR ... NEXT loop if the initial value of the loop, times the sign
of the STEP, exceeds the final value of the loop, times the sign of
the STEP. For a more detailed explanation, see FOR ... NEXT in
Chapter 7.

A-78

18.

17.

18.

19.

20.

21.

. Nested Subroutines. If your program has deeply nested

subroutines or nested FOR ... NEXT loops, an “Out of memory”
error may occur. To avoid this, use the CLEAR statement to set
aside additional stack space for your subroutines. See CLEAR in
Chapter 7 for more information. It is also illegal to exit a FOR . . .
NEXT loop without terminating the loop.

IF...THEN...orIF....THEN ... ELSE. With Model lll
BASIC, the word "THEN" is optional in both of these statements.
With Model 4 BASIC, it is required.

PRINT@ and PRINT TAB. If a string is too long to fit on the
current line, Model 4 BASIC prints the entire string on the next
line. Model Il BASIC prints as many characters as possible on
the first line, and the rest on the second line.

In a PRINT TAB(n) statement, if n is greater than 80, Model 4
BASIC divides n by 80. The remainder of this division is used as
the tab position. For example, if you type TAB(91), Model 4
BASIC tabs to position 11 on the screen. Model lil BASIC tabs to
position 91.

Self-Documenting Programs. Model 4 BASIC programs can be
self-documenting, as in the following example.

166 INPUT EFFORT

118 INPUT DISTANCE

128 FORCE = EFFORT * DISTANCE
138 PRINT FORCE

148 END

Under Model 4 BASIC, the reserved words (FOR and TAN in the
above example) in the variable names will not cause a syntax
error, This is because they must be delimited by surrounding
spaces, in order to be recognized as reserved words.

Model Il BASIC would return syntax errors in this example.

Graphics Characters. Under Model 4 BASIC, the size of the
graphics characters is different than under Model 11l BASIC. The
lowest portions of the Model 4 BASIC graphics characters are
smaller than their Model [l BASIC equivalents.

Input. In Model IIl BASIC, if you do not supply a number or a
string for an INPUT statement {you simply press (ENTER)), the
variables in the statement retain their previous values.

If you do the same in Model 4 BASIC, numeric variables are set
to @ and strings variables are set to a length of 0 (null string).

Width. In Model Ill BASIC, if a string is longer than the width of
the screen, BASIC breaks it at the 64th column and continues it
on the next line.

A-79

Model 4 BASIC, on the other hand, uses a sizing function to keep
the string on one line whenever possible. To determine if it is
possible, BASIC adds the current position of the cursor to the
length of the string to be printed. If the sum is greater than the
width of the screen, BASIC displays the string at the beginning of
the next line. If the cursor was already at the beginning of a line,
BASIC must break the string.

To disable the sizing function so that your BASIC behaves like
Model lll BASIC in this regard, use WIDTH to set the screen width
to 255. (The width at startup is 80.)

A-80

Appendix F/ BASIC Keywords and
Derived Functions

Reserved BASIC Keywords

Internal Internal
Keyword Code Keyword Code
ABS 65414 FRE 65423
AND 248 GET 193
ASC 65429 GOsuUB 141
ATN 65422 GOTO 137
AUTO 171 HEX$ 65434
CALL 182 IF 139
CDBL 65438 IMP 252
CHAIN 185 INKEYS 224
CHR$ 65430 INP 65424
CINT 65436 INPUT 133
CLEAR 146 INSTR 219
CLOSE 195 INT 65413
CLS 159 KILL 200
COMMON 184 LEFTS 65409
CONT 153 LEN 65426
CcOSs 65420 LET 136
CSNG 65437 LINE 177
CvD 65452 LIST 147
CVi 65450 LLIST 158
CVs 65451 LOAD 196
DATA 132 LOC 65454
DATES$ 222 LOF 65455
DEF 151 LOG 65418
DEFDBL 176 LPOS 65435
DEFINT 174 LPRINT 157
DEFSNG 175 LSET 201
DEFSTR 173 MEM 225
DELETE 170 MERGE 197
DIM 134 MID$ 65411
EDIT 167 MKD$ 65458
ELSE 162 MKI$ 65456
END 129 MKS$ 65457
EOF 65453 MOD 253
EQV 251 NAME 199
ERASE 166 NEW 148
ERL 215 NEXT 131
ERR 216 NOT 214
ERROR 168 OCT$ 65433
ERRSS 223 ON 149
EXP 65419 OPEN 191
FIELD 192 OPTION 186
FIX 65439 OR 249
FN 212 ouT 156
FOR 130 PEEK 65431

internal Internal
Keyword Code Keyword Code
POKE 152 SYSTEM 189
POS 65425 TAB 209
PRINT 145 TAN 65421
PUT 194 THEN 208
RANDOM 187 TIMES$ 226
READ 135 TO 207
REM 143 TROFF 164
RENUM 172 TRON 163
RESTORE 140 USING 218
RESUME 169 USR 211
RETURN 142 VAL 65428
RIGHTS 65410 VARPTR 221
RND 65416 WAIT 150
ROW 65459 WEND 181
RSET 202 WHILE 180
RUN 138 WIDTH 161
SAVE 203 WRITE 183
SGN 65412 XOR 250
SIN 65417 + 243
SOUND 205 - 244
SPACES$ 65432 * 245
SPC 213 / 246
SQR 65415 ~ 247
STEP 210 \ 254
STOP 144 , 220
STR$ 65427 > 240
STRINGS$ 217 = 241
SWAP 165 < 242

Derived BASIC Functions

Functions which are not intrinsic to BASIC may be calculated as

follows:
Function

SECANT
COSECANT
COTANGENT
INVERSE SINE

INVERSE COSINE
INVERSE SECANT

INVERSE
COSECANT
INVERSE
COTANGENT
HYPERBOLIC
SINE
HYPERBOLIC
COSINE
HYPERBOLIC
TANGENT
HYPERBOLIC
SECANT
HYPERBOLIC
COSECANT
HYPERBOLIC
COTANGENT
INVERSE
HYPERBOLIC
SINE
INVERSE
HYPERBOLIC
COSINE
INVERSE
HYPERBOLIC
TANGENT
INVERSE
HYPERBOLIC
SECANT
INVERSE
HYPERBOLIC
COSECANT
INVERSE
HYPERBOLIC
COTANGENT

BASIC Equivalent

SEC(X) = 1/COS(X)

CSC(X) = 1/SIN(X)

COT(X) = 1/TAN(X)

ARCSIN(X) = ATN(X/SQR(— X*X + 1))
ARCCOS(X) = — ATN(X/SQR(= X#X + 1))
+1.5708

ARCSEC(X) = ATN(X/SQR(X#X — 1))
+(SGN(X) - 1)+1.5708

ARCCSC(X) = ATN(X/SQR(>+ X ~ 1))
+(SGN(X) - 1)%1.5708

ARCCOT(X) = ATN(X)+ 1.5708
SINH(X) = (EXP(X) = EXP(—X))/2
COSH(X) = (EXP(X) + EXP(~-X))/2
TANH(X) = (EXP(X) — EXP(= X))/
(EXP(X) + EXP(~ X))

SECH(X) = 2/(EXP(X) + EXP(-- X))
CSCH(X) = 2/(EXP(X) -- EXP(— X))

(
COTH(X) = (EXP(X) + (EXP(= X))/
(EXP(X) — EXP(=X))

xXx

ARCSINH(X) = LOG(X + SQR(X*X + 1))

ARCCOSH(X)=LOG(X + SQR(X*X ~ 1))

ARCTANH(X) = LOG((1 + X)/(1 - X))/2

ARCSECH(X) = LOG((SQR(— XX+ 1)
+1)/X)

ARCCSCH(X) = LOG((SGN(X)*SQR
Xx X+1)+1)/X)

ARCCOTH(X) = LOG((X+ 1)/(X - 1))/2

Appendix G/ Video Display Worksheet

|slzlel=z]n =]

NODOnonon

A-85

Appendix H/ Glossary

alphanumeric — consisting of only the letters A-Z, a-z, and the
numerals 0-9.

ASCII — American Standard Code for Information Interchange,
defines seven bit combinations that represent letters, numbers,
punctuation, and control codes.

ASCII files — Files that are readable by LISTing the file. Source, text,
and data files are usually ASCII files.

background task — A job performed by the computer that is not
apparent to the user or does not require interaction with the user.
Some examples are the real time CLOCK, the SPOOLer, and the
TRACE function.

baud — Refers to the rate of serial data transfer.
bit — One eighth of a byte; one binary digit.

boot — The process of resetting your computer and loading in the
resident operating system from the system drive.

buffer — An area in RAM that temporarily holds information that is
being passed between devices or programs.

byte — The unit that represents one character to the Model 4. Ht is
composed of eight binary "bits” that are either ON (1) or OFF
(@). One byte can represent a number from 0 to 255.

COMM — A communications program capable of interacting with:
disk, printer, video display, keyboard, and the RS232 interface.
COMM dynamically buffers all of the system devices.

concatenate — To add one variable or string onto the end of another.

configuration — The status of the system and physical devices that
are available to it. This configuration can be dynamically changed
with several library commands, and can be saved with the
SYSGEN library command. If the system is SYSGENed, the
SYSGENed configuration is re-established each time the
machine is reset or re-started.

cursor — The location on the video display where the next character
is printed. It is marked by the presence of a cursor character.

cylinder — All tracks of the same number on a disk drive. On single
sided drives, cylinders are the same as tracks.

DAM (Data Address Mark) — A control byte that prefixes each sector
on adisk. This byte indicates the type of sector that is about to
be read. It can mark a sector as being deleted or undeleted, a
user sector or a system sector.

DCB — Device Contro! Block, a small piece of memory used to

control the status, input, and output of data between the system
and the devices.

DCT — Drive Code Table, a table in the operating system that
contains information about the type of the drive, the number of
cylinders, the number of granules per track, how to access the
hardware and other control information. The DCT tells the
operating system how the logical drives interface with the
physical drives.

density — Refers to the density of the data written to a diskette.
Double density provides approximately 80% more capacity than
single density.

device — The two types of devices are Logical and Physical.

A logical device is one that is referred to in TRSDOS. Logical
devices have devspecs, a 2-character name that is prefixed with
an asterisk (*). An example of a logical device is *PR, which is
normally used to send data to the printer.

A physical device is a piece of hardware, such as the video
display or printer. A piece of software called a "driver” connects
the logical device to the physical device by translating data from
the format used by logical devices into the format required by the
hardware, and vice versa.

devspec — The name associated with a device by which it is
referenced. A devspec always consists of three characters: an
asterisk followed by two alphabetic characters.

directory — An area of a disk that contains the names of the files on
the disk, information on where the data in those files is stored on
the disk, and other information such as any password, the logical
record length, the modification date, and so on.

disk 1.D, — A disk’s name, master password, and creation date that
TRSDOS assigns when the disk is formatted or backed up.

disk name — The name assigned to a disk when it is formatted. On a
hard disk each logical drive has its own disk name.

*DO — The Video Display device.

:drive — Indicate that a drive number can be inserted where this is
used. A drive number must always be preceded immediately by a

[ERE

driver — A program that interfaces a physical device (a piece of
hardware) to a logical device, which can be referenced by
TRSDOS. Some application programs contain their own driver
programs.

EOF — End of File, a marker used to denote the end of a program or
data file.

A-88

/ext — The extension of a filespec. The use of /ext is sometimes
optional. An extension’s first character must be a "/” (slash)
which is followed by one to three alphanumeric characters, the

first of which must be a letter.

FCB — File Control Block, a small piece of memory used to control
the status and 1/O of data between the operating system and disk
files.

filename — The mandatory name used to reference a disk file. A
filename consists of one to eight alphanumeric characters, the
first of which must be alphabetic.

filespec — A disk file's name. A filespec consists of four fields and
two switches. The first field is always mandatory. A filespec is in
the following format:

lfilename/ext.password:drive!

"I" — (preceding filename) is an optional switch. If you specify
this switch, you can build a file with the same name as a
TRSDOS command or utility. For example, you can issue the
command: LIST DEVICE and TRSDOS will list the user-created
file named DEVICE.

filename — The mandatory name of the file.
/ext — The optional file extension.
.password — The optional file password.
.drive — The optional drive number.

" — (following :d) is an optional switch. If this switch is set, the
end of file marker for filespec is updated after every write to the
file.

filter — A machine language program that monitors and/or alters /O
that passes through it. FILTER is also the library command that
establishes a FILTER routine.

/FIX — The desired file extension for a PATCH file.

foreground task — Jobs performed by the computer that are
apparent to the user, such as running an applications program.

gran — The abbreviation of granule. A gran is the minimum amount
of storage used for a disk file. As files are extended, file
allocation is increased in increments of grans. The size of a gran
varies with the size and density of a diskette.

Hexadecimal — A Base 16 numbering system used in binary
computers. Valid hexadecimal digits are 0 through 9 and the
letters A through F.

HIGHS$ — The name of a memory location in the operating system
that contains the address of the highest unprotected memory

A-89

address available for use. Programs that are above this location
are protected from other programs. You can display or change
the value of HIGH$ by using the MEMORY command or the

(@ HIGHS$ SVC.

interrupt — A signal generated by the hardware which causes the
system to stop what it is doing to perform some other service.
These interruptions are used to perform background tasks such
as checking the keyboard for input and supplying data to the
printer if the spooler is running. After the interrupt is handled the
CPU returns to what it was doing before the interrupt.

1/O — The abbreviation for Input/Qutput.

/JCL — The desired file extension for a DO file. JCL is the
abbreviation for Job Control Language.

#JL — The Joblog device.
*KI — The Keyboard device.

/KSM — The desired file extension for a ksm file. KSM is an
abbreviation for Key-Stroke Multiply.

library — A set of commonly used commands that are grouped
together in one file. TRSDOS contains three system libraries.

load module format — A file format that loads directly to a specified
RAM address.

LSB — The Least Significant Byte. In memory, the LSB is stored
before the MSB. In a register, the LSB is stored after the MSB.

macro — a group of instructions that can be invoked with one
program line.

mod date — The date a file was last written to.

mod flag — A “+ " sign placed after a filename that indicates it was
wtitten to since its tast backup.

MSB — The Most Significant Byte. See LSB.

NIL — A "dummy” device which a logical device can be linked or
routed to. When you reset a user-defined device, it points at NIL.
NIL discards any data that is sent to it and returns a nult (ASCH
0) when data is requested from it. It is useful when you want to
discard output from a program during a test run.

NEN — Next Record Number.

parameter — an optional value that you supply to a command line.
Parameters may follow a command or utility and are enclosed in
parentheses ().

parse — The process of breaking a command into individual
parameters.

A-80

partspec — A way to represent a group of one or more files by
entering only part of the file specification. Partspecs are allowed
in some TRSDOS library and utility commands so that a group of
files can be specified. A partspec can consist of any combination
of the four fields that make up a filespec.

In a partspec, a dollar sign ($) can be used to represent any
character in a given position in a filespec. This is called
“wildcarding.”

By prefixing a partspec with a minus sign (), you can cause all
the files except those that match the partspec to be considered in
the given command.

.password — The optional password associated with a filespec. A
password's first character is a period (. } and it is followed by
one to eight alphanumeric characters, the first of which must be
a letter.

PATCH — A utility that makes minor alterations to disk files.
«PR — The Line Printer device.

RAM — Random Access Memory. This type of memory can be
accessed in any order, and any byte can be read or written at
any time.

ROM — Read Only Memory. This type of memory stores information
that will not change. ROM does not require power to maintain its
data.

RS-232-C — A standard developed by the EIA (Electronic Industries
Association) that allows computer equipment made by different
manufacturers to communicate with one another in a serial
fashion. The standard describes the timing, voltages, connector
types, and pin assignments that must be used to be called “RS-
232-C”

sector — A contiguous 256-byte block of disk storage. Each sector
has an 1.D. field which contains its track and sector number. This
allows the hardware to use the proper area of the disk when
reading or writing to the disk.

A sector is the smallest amount of data the operating system will
read from or write to a disk. Several sectors make up a track.
One or more tracks make up a cylinder.

+S] — The Standard Input device. Programs that read data from this
device normally receive data from the keyboard. You can change
this to have data read from a file or another device by issuing a
ROUTE command. This allows a program to accept input from
any device without the need to modify the program.

A-91

80 — The Standard Output Device. Data that is output to this device
by a program is normally displayed on the screen. You can
change this to have the data written to a file or another device by
issuing a ROUTE command. This allows a program to perform
output to any device without the need to change the program.

switch — A parameter with a definite setting, such as ON/OFF or
YES/NO.

token — A variable used in JCL.

track — A group of sectors that are the same radius from the center
of the disk.

utility — A program that provides a service to the user. Utilities differ
from library commands as they are usually larger programs and
require memory that is usually reserved for the user.

word — A 16-bit value which is stored in two contiguous 8-bit bytes.
A word may be specified in hexadecimal format X'nnnn’ or in
decimal format nnnnn where nnnnn is a value from 0 to 65535.

Appendix I/TRSDOS Programs

This appendix contains five TRSDOS programs that you can use with
the SET, SYSTEM, and FILTER library commands. There is a short
explanation and examples for each program.

JOBLOG

ROUTE =JL [TO] filespec
ROUTE =JL [TO] devspec

Establishes the TRSDOS Joblog device (xJL), which coltects certain
information and sends it to a filespec or devspec.

You can use JOBLOG to create a file that contains a list of commands
that you issue.

The information sent to filespec or devspec consists of all commands
entered or received and the time (according to the system clock) that
the commands occur.

When you issue a RESET =JL command, the Joblog function ceases
and filespec closes. See the ROUTE library command for additional
information.

To view the contents of a Joblog file, issue a RESET #JL. command to
close the file, and then a LIST command to list the file's contents.

To view the contents of a Joblog disk file when it is open, add a
“trailing exclamation point” (!} to filespec (see “filespec” in the
GLOSSARY). Then use the LIST library command to list the file to the
screen or printer,

NQOTE: If filespec already exists, information sent to it is appended to
the end of the file.

Examples
ROUTE »*JL TO LISTER/JBL (ENTER

sends a log of all commands entered and received to the file
LISTER/JBL.

ROUTE »JL TO *PR (ENTER

sends a log of all commands entered and received to the printer.

KSM/FLT

Filter
SET devspec [TO] KSM/FLT [USING] filespec [(parameter))
FILTER =Kl devspec

Establishes the KSM (Key Stroke Muitiply) filter.

You can use KSM/FLT to assign repetitive tasks (such as issuing a
TRSDOS command) to one key, so that you only have to press
CLEAR and the assigned key to execute the task.

devspec is any user-created devspec.

filespec contains up to 26 "key equivalents.” The KSM filter loads the
key equivalents from filespec into high memory.

The parameter is:

ENTER = vajue specifies value as the character TRSDOS
recognizes as an (ENTER) character in a KSM file. value is a
number in the hexadecimal format X'nr', a decimal number,
or a single character such as a colon (:). The default value
is the semicolon (;).

Each key equivalent is associated with the CLEAR key and an
alphabetic key. When you press and a key, TRSDOS
executes the phrase associated with that key.

Building a KSM File

You can use the BUILD library command to build a /KSM file. To build
a KSM file named ROUTINE/KSM, type:

BUILD ROUTINE/KSM (ENTER)

TRSDOS then lets you enter up to 26 key equivalents with the
prompts:

A=>
B=>
C=>

A-94

To assign a character, type in the desired command; then terminate
the line by pressing ENTER (or the character you specified with the
ENTER parameter). To skip a character, press (ENTER) at the prompt.
Pressing (ENTER) does not place an (ENTER) character at the end of the
key equivalent, but merely terminates your input for that key. To place
an (ENTER) character in a key equivalent, type a semicolon { ;) where
you wish an (ENTER) press to be executed. Each line can be up to 255
characters long.

When you have assigned all 26 characters, the file is closed and the
BUILD terminates. Pressing CTRDGHIFT(@) terminates the BUILD at
any time.

if you want to create characters or strings that are not available from
the keyboard, use the (HEX) parameter of the BUILD command.

It is not absoluteiy necessary to use the BUILD command with the
/KSM extension to create a KSM file. The KSM/FLT program can use
any file in ASCIil format. TRSDOS uses the same rules concerning
(ENTER) and the semicolon for a file in an ASCil format.

If you wish to deactivate the KSM filter, issue the command:
RESET =*KI (ENTER)
If you wish to change to a different KSM file, issue the commands:

RESET #KI (ENTER
RESET devspec (ENTER

And re-issue the commands for the new file:

SET devspec KSM/FLT (USING] filespec (ENTER
FILTER *KI devspec (ENTER

Examples
A=>DIR :0 (ENTER

specifies the key equivalent of A as “DIR :@”. The command DIR 0 is
dispiayed on the screen when the and (&) keys are pressed
together. The command is not executed until you press the (ENTER)
key.

B=>FREE ; (ENTER

specifies the key equivalent of B as “FREE;”. A semicoion in a key
equivalent represents an (ENTER) character. So, when you press
(CLEAR) and (B, the FREE library command is executed immediately
(since the last character of the phrase is a semicoion).

F=>FREE:DEVICE; (ENTER

specifies the key equivalent of F as “"FREE;DEVICE;”. A semicolon in
a key equivalent represents an ENTER character. So, when you press

A-95

COM/DVR

(CLEAR) and (B, the FREE and DEVICE library commands are
executed immediately.

Error Conditions

If you attempt to use KSM/FLT with more than one device by issuing
another SET command, TRSDOS displays a “Filter already attached
to #xx” error message. #xx indicates the device specified in the first
SET command.

When you install more than one KSM file, the second KSM file cannot
be larger than the first KSM fiie. If the second file is larger, TRSDOS
displays a "Request exceeds available memory” error message.

Driver
SET =CL [TO] COM/DVR

In order to use the Communications Line device (*CL}), you must SET
it to this driver program.

You can use COM/DVR to prepare the Communications Line (xCL) for
use.

COM/DVR sets =CL to the RS-232-C hardware.

After you SET =CL to the RS-232-C hardware, you can aiter the
parameters of the RS-232-C port with the SETCOM command.

Example
SET *CL TO COM/DVR
sets =CL to its driver program.
SETCOM (WORD=8,PARITY=0FF) (ENTER!

configures the RS-232-C port using the values specified.
Technical Information

When you set the COM/DVR, it will be placed in high memory if there
is not enough room in low memory. (Low memory is within TRSDOS
and does not take away from the memory available for your

A-98

FORMS/FLT

programs.) If this happens, a message similar to the following
appears:

Note: driver installed in high memory.

If you want to use Memdisk while you are using COM/DVR, be sure to
install Memdisk first.

If you attempt to use COM/DVR before you install =CL in memory with
the SET command, TRSDOS displays a "Must install via SET” error
message.

It an application program sets Bit 0 of CFLAGS, TRSDOS displays the
error message "‘No memaory space available” when you attempt to
load =CL. The application program must reset the bit in CFLAGS. See
the Modef 4/4P Technical Reference Manual for additional information
on CFLAGS.

Filter
SET =FF {TO] FORMS/FLT
FILTER *PR =FF

You can use FORMS/FLT to prepare the printer filter (+FF) for use.

In order to use the printer fitter (xFF), you must SET it to this filter
program, and activate it with the FILTER command.

After you SET =FF to FORMS/FLT, you can set up the parameters of
the printer fitter with the FORMS command.

Example

SET *FF TO FORMS/FLT (ENTER)

sets +FF to its filter program.
FILTER #PR *Ff
filters the printer to the printer filter program.
FORMS (MARGIN=12,CHARS=70, INDENT=17) (ENTER)

configures the printer filter by causing all lines to start 12 spaces in
from the normal left-hand starting position. Any line longer than 70
characters is indented 17 spaces (5 spaces past the margin) when
wrapped around, so it is printed starting at position 7.

A-97

Technical Information

When you set the FORMS/FLT, it will be placed in high memory if
there is not enough room in low memory. (Low memory is within
TRSDOS and does not take away from the memory availabie for your
programs.) If this happens, a message similar to the following
appears:

Note: iter installed In high memory.

if you want to use Memdisk while you are using FORMS/FLT, be sure
to instalt Memdisk first.

Error Conditions

If you attempt to use FORMS/FLT before you install *FF in memory
with the SET command, TRSDOS displays a “Must instalt via SET”
error message.

If an application program sets Bit 0 of CFLAGS, TRSDOS displays the
error message “No memory space available” when you attempt to
load *FF. The application program must reset the bit in CFLAGS. See
the Model 4/4P Technical Reference Manual for additional information
on CFLAGS.

If you attempt to use FORMS/FLT with more than one device by
issuing another SET command, TRSDOS dislays a “Filter already
attached to xxx” error message. #xx indicates the device specified in
the first SET command.

MEMDISK/DCT

Driver
SYSTEM (DRIVE =drive,DRIVER = “MEMDISK”)

Lets you add a pseudo floppy drive to the system which keeps its files
in memory. Files stored on this drive can be accessed, read, and

written more rapidly than files on a floppy. Only one Memdisk can be
instalied at a time.

Alt TRSDOS utilities treat the Memdisk drive as any other drive, so
you can COPY, BACKUP, REMOVE, PURGE, ATTRIB, and disptay
the DiRectory of the files on the Memdisk.

A-98

drive is the drive number you wish Memdisk to be. If you specify a
drive number that is already defined, it is disabled and the Memdisk
takes its place. drive is a number from 1 to 7.

To Install the Memdisk
When you start Memdisk, the following menu is displayed:

<Ay Bank @ (Primary Memoryd
<BY
<Cw
<Dy
e

115K

Which type of allocation -
Cus, By, <C», <Dy, ar €F37

Each bank contains 32K of memory. If your system has only 64K of
memory, then you do not have Banks 1 and 2.

Bank 0 is the top half of user memory. (See the Memory Map in the
Technical Reference Manual.) It is shared by programs, drivers, filters,
and Memdisk.

Because it is shared, if you select Bank @ you are prompted for the
number of cylinders that are to be used for the Memdisk in Bank 0.
Selecting the number of cylinders allows you to use Memdisk but still
have enough memory for the programs you want to run. You must
select at least 3 cylinders. If you format Memdisk, the amount of
memory used by each cylinder is shown below:

Double Density 256 x 18 = 4608 bytes per cylinder (4.5K)
Single Density 256 x 10 = 2560 bytes per cylinder (2.5K)

It you specify Banks 1 or 2, then all of the bank (32K) is used. If you
specify option (D), then Memdisk uses Banks 1 and 2 (64K).

Alter selecting which bank you want to use, you see:
Single or Double Density <5,D»7

This allows you to adjust the way memory is formatted. You get the
same amount of space at single density as you do at double density,
but the number of sectors per cylinder differs.

This feature allows mirror image backups to be performed, which
allows data to be loaded into and out of Memdisk much faster.

Memdisk looks exactly like a floppy disk to a program.

If you selected Bank @ (Double Density), the following message is
displayed:

Nele: Fach Cylinder equals 4.5%0K of space.
Number of free cylinder

s 1-N 7

N can be from 1 to 12. The value of N varies according to the number
of other drivers resident in memory.

If you specified Bank 8 (Single Density), the following message is
displayed:

Mote: Each Cylinder eguals 2.58K of space.
Mumber of free cylinders 3-N 7

Enter the number of cylinders you want Memdisk to use in Bank 0,
using the formula on the previous page. N can be from 3 to 7.

After you enter the configuring information, the following prompt is
displayed:

Do you wish to Format i1 <Y, N»7?

If you have not used Memdisk before, press (Y. Formatting
is not optional upon initial installation. MEMDISK is not initially
installed unless you format it.

If you have used Memdisk and the system failed for some reason,
press (N to retrieve files that were left in Memdisk when it was last
used. Remember that if the power went off, the Memdisk contents
were erased.

If you answered the format question with (Y, you see the message:
Verifying RAM Cylinder MN
Verifying Completle, RaM good
Directory has been placed on Uylinder 1
MemDIGK Successfully Installed

At this point, the Memdisk has been added to your system. The disk
name is MEMDISK. It can be treated just like a floppy disk drive until
you disable it or you reset the system.

To Disable the Memdisk

If you want to disable the Memdisk, then you must issue the
command:

SYSTEM (DRIVE=drive,DRIVER="MEMDISK™) (ENTER

Then, at the menu select the {E) option. Memdisk displays one of the
following messages:

MemDISK disabled, memory now available

MemDISK disabled, Unable to reciaim high memary

MemD1SK disabled, Unable to reclaim driver area

MemDISK disabled, Unable to raclaim high memory
and driver area

A-100

If you receive the first message, Memdisk was disabled and was able
to reclaim alt memory (driver area, high memory (Bank 0), and
afternate memory banks 1 and 2) that it was using.

If you receive the second message, Memdisk was unable to reclaim
high memory (Bank @) because another driver or filter was installed
after Memdisk was set up and the other program is stilt in the way.
This is known as memory fragmentation. If you need to use this area
of memory, then you must reset the system.

If you receive the third message, Memdisk was disabled and able to
claim high memory or alternate bank memory, but it could not reclaim
the driver area.

If you receive the fourth message, Memdisk was disabled, but it could
not reclaim any memory.

Error Conditions

Memdisk should be installed before COM/DVR or FORMS/FLT are.
Filters and drivers can be loaded into an area within TRSDOS called
low memory. (This area does not take away from the memory
avaitable for your programs.) However, not all of the drivers and filters
can fit into this area at the same time. If there is no room left in low
memory, most of the drivers and filters can be loaded in high remory.
Since low memory works on a first come, first served basis and
Memdisk is the only driver or filter that must load into low memory,
you should install Memdisk before the other drivers and filters. This
ensures that there is space available in low memory for Memdisk to
reside.

If you omit the DRIVE = parameter in the system command when
installing Memdisk, TRSDOS displays “Logical drive number required”
error message.

You cannot specify Drive @ when installing Memdisk. You must install
Memdisk as another drive, then use the SYSTEM (SYSTEM = 0)
command to change Drive 0 to Memdisk.

If you attempt to use Memdisk before you install it in memory with the
SYSTEM command, TRSDOS displays a "Must install via SYSTEM
(DRIVER =)" error message.

If you attempt to re-install Memdisk in a different area of memory than
the area that it was originally installed in, you get the error message
"MemDISK already Active.” Memdisk must always be re-installed as it
was initially instatled.

If you specify the wrong drive number (in the SYSTEM (DRIVE =
drive, DRIVER = "MEMDISK”) command) and you attempt to disable
the Memdisk, then you receive the error message "Target Drive not a
MemDISK.”

A-101

FLOPPY/DCT

If you attempt to disable a Memdisk and there is no MemDISK in the
system to disable, then you receive the error message "MemDISK not
present,”

Technical Information

A Bank 0 Memdisk and BASIC use the same area of memory (RAM).
Since a Bank @ Memdisk and BASIC use the same area of memory,
we recommend that you do not use BASIC when Memdisk is resident
in Bank 0.

If you are going to use Memdisk as the system drive, you must
BACKUP SYS@/SYS to it before it becomes the system drive. After
Memdisk becomes the system drive, you can REMOVE SYS0/SYS
from the Memdisk.

Driver
SYSTEM (DRIVE =drive[,]IDISABLE][]DRIVER = “FLOPPY”)

Defines a logical drive as a floppy drive.

After you assign a slot, use DISABLE to remove access to the drive.
You can re-enable the drive with different settings.

Error Conditions

If you enter FLOPPY/DCT at the TRSDOS Ready prompt, TRSDOS
displays a "Must install via SYSTEM (DRIVER =)" error message.

If you have already defined a drive with the SYSTEM command, you
must disable the drive with the DISABLE option before you redefine
the device.

If you omit drive or specify an invalid drive number, TRSDOS displays
a "Logical drive number required” error message.

A-102

CLICK/FLT

Filter
SET devspec [TO] CLICK/FLT [(CHAR =number)]
FILTER #KlI devspec

Produces a tone from the sound generator inside your computer.

Before you use CLICK/FLT, you must install it in memory with the SET
command. After you install the filter, the sound generator produces a
tone each time you press a key on your keyboard. This is called
auditory feedback.

You can change the pitch and duration of the tone by applying a patch
to the values that produce the tone. The patch is:

PATCH CLICK/FLT.FILTER o
(DB?,AB=dd pp:FOQ,A0=18 48) (ENTER

d can be a hexadecimal value in the range 1 to FF, specifying
duration. 1 produces the shortest duration and FF produces the
longest duration.

P can be a hexadecimal value in the range 0 to FF, specifying the
pitch of the tone. 1 produces the highest pitch and FF produces the
lowest pitch.

The sound that CLICK produces when the system is running at slow
speed (2MHz) is different from the sound that CLICK produces when
the system is running at 4 MHz.

You can include the optional parameter CHAR = number to produce a
tone each time CLICK/FLT encounters a specific character. number
represents the specific character and can be a hexadecimal number
in the range 1 to 255. You can abbreviate CHAR to C.

Examples

SET *11 CLICK (C=13) (ENTER)
FILTER =PR =11 (ENTER

Filters all data sent to the printer through the device, #II. Each time =I|
encounters a carriage return, (X'0D’), CLICK produces a tone.

A-103

Technical Information

If an application program sets Bit @ of CFLAGS$, TRSDOS displays the
error message “MNo memory space available” when you attempt to
load the click filter. The application program must reset the bit in
CFLAGS. See the Model 4/4P Technical Reference Manual for
additional informaton on CFLAGS.

If you attempt to use CLICK/FLT before you install the click filter in
memory with the SET command, TRSDOS displays a "Must install via
SET" error message.

When you install CLICK/FLT, TRSDOS places it in high memory if
there is not enough room in low memory. (Low memory is within
TRSDOS and does not reduce the memory available for your
programs.) If this happens, a message similar to the following
appears:

Note: filter installed in high memory.

If you want to use Memdisk while you are using CLICK/FLT, you must
install Memdisk first.

Immediate Execution Program

Using TRSDOS Version 6.2, you can create an Immediate Execution
Program (IEP). Once you create an IEP, you can load and run it at

TRSDOS stores an IEP in the SYS13/SYS file. Because TRSDOS
recognizes the program as a system file, TRSDOS includes the file
when creating backups and loads the program faster. To implement
an lEP use the following syntax:

COPY filespec SYS13/5YS.LSIDOS:drive (C=N) (ENTER

filespec can be any executable (/CMD) program file. drive specifies
the destination drive. The destination drive must contain an original
SYS13/SYS file.

Example
COPY SCRIPSIT/CMD:1 5YS13/8YS.Ls1Dp0S:8 <c=n) (ENTER

TRSDOS copies SCRIPSIT/CMD from Drive 1 to SYS13/SYS in Drive
0. At the TRSDOS Ready prompt, when you press (=)(ENTER),
TRSDOS executes SCRIPSIT.

Error Conditions

If you type (= (ENTER) before you copy a file to the SYS13/SYS file,
TRSDOS displays a “No command <> present, as SYS13" error
message.

A-104

Appendix J/ Memory Maps

TRSDOS Memory Map

0000H to 25FFH Operating System Reserved for TRSDOS

2600H to 2FFFH Overlay Area

3000H to HIGH$ User Program

HIGHS to Driver/Filter/User
FFFFH or System tasks

operations.

Used by all library commands
and some utilities. If BASIC or
other programs use this area,
you must not allow SYSTEM
commands (through the use of
the @ CMNDR SVC) or you
must reload this area when the
SVC returns.

Reserved for applications
programs.

Reserved for system

drivers, filters, and tasks. The
spooler, and drivers that
cannot fit into the area
reserved in TRSDOS are
stored in this area of memory.
When MEMDISK resides in
Bank 0, it is also stored in this
area of memory.

HIGHS$ is a pointer maintained by TRSDOS. It moves depending on
the number and size of modules stored above the address that
HIGHS$ points at. You can use the MEMORY command to display or

alter the value of HIGHS.

A-105

BASIC Memory Map

0000H to 25FFH

2600H to 2FFFH

3000H to 80FFH

8100H to
Bottom of Stack

Bottom of
Stack to HIGHS$
or User-Defined
top of memory
M)

User-Defined
top of memory
(M) or HIGH$
to HIGH$

Operating System Reserved for TRSDOS

Overlay Area

BASIC

User's BASIC
Program

BASIC stack and
File Control
Block(s)

Assembly

language routines

callable from
BASIC.

operations.

Used alternately by TRSDOS
and BASIC. Whenever you use
a TRSDOS library command,
TRSDOS uses this area to
store the program that will
perform the command. BASIC
reloads this area with its data
when you return from
TRSDOS.

Reserved for BASIC.

Reserved for your
programs, variables, strings,
and arrays.

Contains the stack used by
BASIC and the File Control
Block(s) (FCBs). Each FCB
requires 564 bytes of

storage. The number of FCBs
that your system has is
selected with the command:
BASIC (F=n), where ‘n’
specifies the number of files
that can be open at any one
time. (One additional 564-byte
block is always allocated and is
reserved for use by BASIC.)

This area exists only if you
create it with the command,
BASIC (M= address) where
‘address’ specifies the last
address that BASIC will use.
The area between “M” and
HIGHS is used to store
assembly language routines
that are called by BASIC
programs.

A-106

HIGHS to Driver/Filter/User Area in which drivers, filters,

FFFFH or System tasks and tasks that are continuously
used by the system are stored.
ltems in this area include the
spooler, drivers and filters that
cannot fit into the area
reserved within TRSDOS, and
MEMDISK (when it resides in
BANK 0.) Assembly language
routines that are to be called
from BASIC may be placed
here as long as the programs
follow the rules outlined in the
Model 4/4P Technical
Reference Manual.

User Program

Your User Program space is dynamic. It is dependent on the number
of data files you requested when loading BASIC (called “concurrent”
files), the HIGH$ marker, the amount of stack space, and the highest
memory location you specified when loading BASIC. For information
on how to load BASIC, see Chapter 1,

If the HIGHS marker is at the top of physical memory (FFFFH) and
you do not set the highest memory location BASIC can use (with the
M parameter), there is 31 K bytes of memory available for your
program. Each concurrent file uses 564 bytes of memory.

If HIGHS is not at FFFFH, or if you specify the M parameter when
loading BASIC, use the PRINT FRE(Q) command to display the
amount of program space available.

The number of concurrent files also determine the location of the top
of the stack. BASIC uses this formula:

location = M — (564 x number of concurrent files) — 564

Location is the top of the stack. You can use the CLEAR statement to
set aside additional stack space. Additional stack space decreases
the amount of program space available.

A-107

Appendix K/ Using The Device-Related
Commands

The advanced, device-related commands affect the assigned
TRSDOS devices and the devices that you create. They are:

DEVICE, FILTER, LINK, SET, ROUTE, RESET

DEVICE is different from the other commands because instead of
directly affecting the devices, DEVICE actually shows how each
device is set up and what connections between devices (and files)
exist. So, each time you issue one of the above commands, you
should issue a DEVICE (B) command to make sure the devices are
set the way you want them.

This figure illustrates the device structure standard configuration, that
is, how the devices are routed at their normal start-up state under
TRSDOS 8. The illustrations on the following pages illustrate the
system device configuration after certain commands are executed. We
assume that before each command or group of commands is
executed, that the device configuration is in its normal start-up state
as illustrated in this flowchart.

cPy
K
KEYBOARD
DEVICE
AND
DRIVER
.00
VIDEO
DISPLAY
DEVICE
AND
DEVICE DRIVER
CONTROL
BLOCK
PR
PRINTER
FILE DEVICE
CONTROL bev
BLocK DRIVER

AS-232-C
SERIAL O
DRIVER

‘L
DISK DRIVE DisK
CONTROL DRIVE
TABLE 25‘[’)'(35
DCT)

(ocn DRIVER

A-109

Creating an Unfiltered Link

An unfiltered link is different from a filtered link because there is not

an in-between program (a filter) that affects the data flowing between
the two devices.

Creating an unfiltered link between a device and a file involves the
ROUTE and LINK commands.

ROUTE can create a user device and routes it to a file.
The command

ROUTE «DO TO +PR (ENTER

redirects data sent to the video display to the printer. All data that

prints on the screen prints on the printer as well. After executing this
statement, the device configuration structure is:

KEYBOARD

i DEVICE
AND
DRIVER

DO VIDEO
DISPLAY

DEVICE
AND

DEVICE DRIVER

CONTROL

BLOCK

PRINTER
FILE

DEVICE
CONTROL

AND
BLOCK PR DRIVER

RS-232-C
SERIAL 1:0
DRIVER

DISK
DRIVE
DEVICE
AND
DRIVER

DISK DRIVE
CONTROL
TABLE
(DCT)

oN

A-110

LINK creates a link between two devices.

Remember that it is a good idea to issue a DEVICE command before
you create a link. In the following example, we are going to route the
printer. On start-up, the printer is shown in the device table as:

*PR => X'BEBF’

The device table entry shows the place in memory (X'0EQF') where
the driver program that controls the printer is located. This memory
address may vary.

Example

In this example we are going to link the printer to a file. That is, all
data sent to the printer is also sent to the file.

To create a link between the printer (+PR) and the file PRINT/TXT:0:

1. Create a logical device *DU, open the file PRINT/TXT on Drive 0,
and route the device to the file by issuing the command:

ROUTE DU TO PRINT/TXT:¢ ENTER
The device table shows:
*DU <=> PRINT/TXT:@

The device configuration is:

K KEYBOARD
DEVICE
ANDY
DRIVER

DEVICE
CONTROL
BLOCK

PRINTER
FiLE DEVICE
CONTRDL

AND
BLOCK DRIVER

R8-232.C
L SERIAL 11O
() S ORIVER

{PRINT/TXT @)

15K
DISK DRIVE DRIVE
CONTROL DEVICE
TABLE AND
{DCT) DRIVER

A-111

Everything that TRSDOS sends to DU is sent to the file PRINT/
TXT on Drive 0.

. Link the printer to =DU, which in turn is routed to PRINT/TXT by
issuing the command:

LINK *PR DU (ENTER
the device table shows:

*PR => »L@ | *DU & => X’'QEQF’
*DU <«=> PRINT/TXT:0

The following link now exists:

*PR - Printer Driver (at X’'0EQF’)
PR == #DU == PRINT/TXT

The device configuration is:

CPU

KEYBOARD
DEVICE
AND
DRIVER

KI

VIDEO
DISPLAY
DEVICE

DEVICE
CONTROL
BLOCK

AND
DRIVER

FILE
CONTROL
BLOCK

PRINTER
DEVICE
AND
DRIVER

18-232-C
CL SERIAL 'O
<) S DRIVER

(PRINT/TXT:0)

DISK
DISK DRIVE DRIVE
CONTROL DEVICE
TABLE AND
(DCT} DRIVER

Everything that TRSDOS sends to #PR is also sent to +DU and
from there to PRINT/TXT on Drive 0.

A-112

Creating a Filtered Link

Creating a filtered link involves the SET and FILTER commands. A
filtered link involves a devices and a filter program which affects the
data that flows to or from the device.

SET prepares a user-created device for the filter connection.

FILTER creates the "logical link" between two devices. The first
device is usually a system device, and the second device is always a
user-created filter device.

Example

To create a filter link you need a filter program. In this example we
use the system filter program FORMS/FLT.

Before you issue a SET or FILTER command, be sure to issue a
DEVICE command to see the start-up conditions of the system
devices. In this example, we are going to filter the printer device. On
start-up, the printer is shown in the device table as:

*PR <= X'QEQF”

The device table entry shows the place in memory (X'0EQF’) where
the driver program that controls the printer is located. This memory
address may vary.

To create a FORMS filter link between *PR and a logical device #FF.
1. Set *FF to the FORMS filter by issuing the command:
The device table shows:

*PR <= X’/QEBF
*FF <# [Inactivel X'FFG77
Options: Type, Forms

A-113

The device configuration is:

DEVICE
CONTROL
BLOCK

FILE
CONTROL
BLOCK

2. Now use the FILTER command to connect the FORMS filter

FORMS/
FLT

DISK DRIVE
CONTROL
TABLE
(oCT)

=0

program to the printer by issuing the command:

The device table shows:

*PR ¢ [*FF] X'FFB7”

*FF <= X/QEBF”

Options: Type, Forms

KEYBOARD
DEVICE
AND
DRIVER

VIDEO
DISPLAY
DEVICE

DRIVER

PRINTER
DEVICE
AND
DRIVER

RS-232-C
SERIAL 'O
DRIVER

DISK
DRIVE
DEVICE
AND
DRIVER

A-114

The device configuration is:

cry
KEYBOARD
K DEVICE
AND
DRIVER
. VIDEO
o DISPLAY
DEVICE
AND
DEVICE DRIVER
CONTROL
BLOCK
PRINTER
FILE PR DEVICE
CONTROL AND
BLOCK DRIVER
EF
FORMS!
i RS-232-C

SERIAL 10
DRIVER

“Ct
DISK
DISK DRIVE . DRIVE
CONTROL DEVICE
TABLE AND
(0CT) DRIVER

Printer Driver - »FF - FORMS/FLT -+ #PR

The following link now exists:

Everything that goes to the printer is sent through =FF, filtered
through the FORMS filter and printed on the printer device.

Using the RESET Command

You can use RESET with SET, FILTER, ROUTE, or LINK. In this
example, we show you what happens when you break the link
between —PR and PRINT/TXT.

A-115

Example
To break the link:

#PR — Printer Driver (at X'0EQF")
#*PR = =DU < PRINT/TXT

1. First, to remove the routing between DU and PRINT/TXT, issue
the command:

RESET DU (ENTER)
The device table shows:

*PR -> »L@ | *DU & => X’BEQF~
*DU <«=> NIL

The following link now exists:

=PR — Printer Driver (at X'0EOF’)
#PR - «DU < NIL

All output sent to *PR s still sent to =DU, even though *DU is
pointed NIL.

2. To remove the link between #PR and =DU, issue the command:
RESET *PR (ENTER
The device table shows:

*PR => X‘BEBF~”
*DU <«=> NIL

Now you have returned #PR to its original start-up condition, and
the link between *PR and DU no longer exists.

(You can type REMOVE *DU to remove =DU from the device
table.)

A-116

Appendix L/ Setup for 50 Hz AC Power
(non-USA users)

If you have had your computer adjusted to operate in areas where the
AC power is 50 Hertz (Hz) rather than 60 Hz, you can execute a
SYSTEM (HERTZ) command. This command applies a patch to your
TRSDOS system diskette to make the software aware of the fact that
the hardware is operating at 50 Hz.

If you do not apply this patch, the time-of-day clock runs at the wrong
speed. Failure to apply this patch causes no other problems. Your
hardware must have been modified before you apply this patch.

Before you execute a SYSTEM (HERTZ) command, make a backup
of your master diskette. Remove your master diskette from Drive 0
and insert the backup diskette in Drive 0. At the TRSDOS Heady
prompt, type:

SYSTEM (HERTZS) (ENTER)

If you have your hardware readjusted to operate at 60 Hz rather than
50 Hz, you can reverse this procedure. At the TRSDOS Ready
prompt, type:

SYSTEM (HERTZ6) (ENTER

After you execute a SYSTEM HERTZ command, TRSDOS displays

the TRSDOS Ready prompt. TRSDOS stores the Hertz value on the
diskette in Drive 0. Press RESET to put the change into effect. This
loads the patched software into RAM.

A-117

Appendix M/ Backup Limited Diskettes

Some software products distributed by Tandy come on backup limited
diskettes. This means that you can make only a fixed number of
copies of the master diskette that you receive. You should use the
master diskette to make only the backup copies that you will use, as
you cannot make a backup copy of a backup that was made from a
backup limited diskette.

These diskettes are clearly marked fo indicate that they are backup
limited. If you are uncertain, contact your Radio Shack Computer
Center®™ or the store where you purchased the diskette.

When you have exhausted the number of copies you are allowed to
make or if the master diskette is write protected, the following
message appears when you attempt to back up the diskette:

Frotected source disk

Making a Backup Copy

Before you make a copy of a backup limited diskette, you must
remove the write-protect tab from the diskette (if one is present).
Because the diskette is not write-protected, you should be very careful
that you do not accidentally format the master diskette or back up the
blank diskette to the master disketts.

Follow the steps given below:

1. Insert a TRSDOS system diskette into floppy Drive 0. Insert a
blank diskette into floppy Drive 1.

2. Format the blank diskette, following the directions given with the
FORMAT utility. (You can use the command FORMAT :1 (Q=N)
(ENTER) to produce a default diskette.)

If the diskette has any flaws on it (that is, if an asterisk is
displayed next to one or more cylinder numbers), repeat step 2
with another blank diskeite. Remember that you can make only &
fixed number of copies of this diskette, so you should try to use
good media.

3. At TRSDOS Ready, type:
BACKUP :@ :1 (x) (ENTER)
4. When you see the prompt:

Insert SDURCE disk <EMTER>

A-119

remove the TRSDOS system diskette from Drive 0 and set it
aside.

Remove the write-protect tab (if any) from the master backup
limited diskette you want to copy. This will be the SOURCE
diskette.

Place the backup limited diskette in Drive 0 and press (ENTER).

PLoCY Ny 7

Respond by typing (Y ENTER)

6. The computer now performs the backup. When you see the
prompt:

sert SYSTEM disk <ENTER>

remove the backup limited diskette from Drive ¢ and place a
write-protect tab on it.

Insert the TRSDOS system diskette in Drive @ and press (ENTER).
A message is displayed telling you if the backup operation was
successful or not. If there was an error, start over with step 1
using another blank diskette. Unsuccessful backups do not count
against the number of backups you can make.

Remove the new backup copy from Drive 1. Place a write-protect
tab on it and place a tabel on the jacket to identify it.

Backing up selected files

You can move the programs on a backup limited diskette to the hard
disk using backup by class or backup reconstruct. (The latter occurs
automatically when the target drive is a hard disk.) This is counted the
same as making a diskette copy using the procedure described
above.

Note that if you do a backup by class and move only selected files,
and if any of the files that are moved are protected, it is counted as
though you made a copy of the entire disk. For example, suppose that
you are allowed to make three backups of a backup limited diskette.
You do a backup by class to move visible files. If one of the visible
files is protected, then that file is copied along with the other visible
files. However, you can now make only two more copies of the files
on the master disk.

A-120

For this reason, you should be careful that you do not cheat yourself
out of a copy. When moving files to the hard disk from a backup
limited diskette, ask for all of the files using the (SYS,INV) options in
the BACKUP command. If this moves some unwanted material, it can
be purged later.

You may use backup by class or backup reconstruct to move
non-protected files to and from the hard disk or a backup of the
backup limited diskette. However, the protected files are not backed
up and will not be listed if you use the QUERY option.

A-121

Appendix N/ Converting Model 4 Data
Files to Model Il Mode

This appendix describes how you can use data files created on your
computer (under TRSDOS Version 6) in Model il mode.

Start up your system under TRSDOS Version 6. At the TRSDOS
Ready prompt, insert a blank, write-enabled diskette into Drive 1.
Format the Drive 1 diskette by typing:

FORMAT :1 (SDEN,CYL=35,Q=N,ABS) (ENTER

This command makes the diskette almost identical o those formatted
by Model | disk operating system (TRSDOS Version 2.3). Later, you
will copy the files from this diskette to a TRSDOS Version 1.3 diskette.

Use the COPY command with the CLONE =NO Option, to copy files
from Drive 0 to Drive 1. If any of the files have a password, use the
ATTRIB command to remove the password.

Remove the Version 6 diskette from Drive 0 and insert a TRSDOS
Version 1.3 diskette. Press RESET to startup your system under
Version 1.3.

After you enter the date and time, type:
CONVERT (ENTER

When CONVERT asks for the source drive, type (1) ENTER). When it
asks for the destination drive, type (@) (ENTER).

CONVERT reads the diskette in Drive 1. If a file of the same name
already exists on the Drive 0 diskette, CONVERT asks you if you

want to copy over the file. If you respond by typing (Y) (ENTER), the
file on the disk in Drive 1 replaces the file on the diskette in Drive 0
and TRSDOS moves all files on the Drive 1 diskette to Drive 0. If you

respond (N (ENTER), TRSDOS copies all other files except that one.

When CONVERT is complete, the TRSDOS Ready prompt appears.
You can now reuse the diskette in Drive 1.

A-123

Index

b 2-4 application keys 1-44
. (advance memory) 1-71 CLEAR(D) 1-44
—~ (decrement memory) 1-71 CLEAR(2) 1-44
ltag 2-33 CLEAR(Z) 1-44
#tag 2-34 (CLEARX(A) 1-44
*FR 1-44, 1-45, 1-46 (CLEARX5) 1-44
device 1-48 CLEAR(E) 1-44
“received Data” 1-49 *FR OFF 1-45
«FS 1-46, 1-52 arguments 2-4
array 2-29
A (cancel and restart) 2-20 ASC 2-66
ABS 2-65 ASCHi format 1-17
accessing a direct-access file 2-56 ASCH modify 1-67
action keys 1-44 assigning protection attributes 1-21
CLEAR(7) 1-44 to a disk 1-22
dump-to-disk 1-44, 1-52 to afile 1-21
=*FR 1-44 owner passwords 1-21
CLEARY(B) 1-44 user passwords 1-21
CLEARI(S) 1-45 ATN 2-67
1-46 ATTRIB 1-20, 1-58
CLEAR(Z) 1-46 protection passwords 1-20
CLEAR(=) 1-46 AUTO 1-24, 2-67
(CLEARGHIFD(Y) 1-46
half-duplex 1-46 B (move block of memory) 1-68
full-duplex 1-46 BACKUP 1-26
(CLEARSHIFD(CD 1-47 by class 1-27, 1-30
“echo”ing 1-47 limited 1-56, A-119
1-47 mirror image 1-29, 1-30
carriage return 1-47 non-limited 1-56
(CLEARSHIFD($) 1-47 reconstruct 1-29, 1-30, 1-31
(CLEAR/SHIFD (%) 1-47 with the (X) parameter 1-27, 1-28
CLEARSHIFD(&) 1-47 BASIC 2-3
CLEARGHIFD(") 1-48 command mode 2-13
control characters 1-48 concepts 2-25
CLEARGSHIFD(D 1-48 execution mode 2-14
cursor 1-48 functions 2-62, A-83
CLEARGHIFD()) 1-48 introduction 2-59
1-48 keywords 2-59, A-78, A-81
handshaking 1-48 line edit mode 2-17
1-48 ioading 2-9
device 1-48 notations 2-3
library command 1-48 reserved words A-81
SHIFD(=) 1-49 sample session 2-9
data received 1-49 terms 2-4
addition 2-41 variable classification 2-34
advanced programmer's command 1-14 BASIC command mode 2-13
advanced programmer’s utilities 1-14 special keys 2-14
APPEND 1-17 BASIC concepts 2-25

command 1-35

INDEX-1

BASIC execution mode 2-14
special keys 2-14

BASIC line edit mode 2-17
special keys 2-18

BOOT 1-33

breakable AUTO commands 1-33

buffer 2-4

BUILD 1-35

bulletin board systems 1-42, 1-50

C (call instruction) 1-68
PC register 1-68
single-step 1-68
CALL 2-68
CDBL 2-69
CHAIN 2-70
character set A-46
characters per line A-77
CHR$ 2-72
CINT 2-73
CLEAR 2-74
CLICK/FLT A-103
CLOSE 2-75
CLS 2-76
COM/DVR 1-42, 1,51, A-96
COMM 1-42
command 1-13
A (cancel and restart) 2-20
APPEND 1-17
auxiliary 1-13
break 1-54
CTRD(AD 1-54
Model Il, 12, or 16 1-54
CTRD(C) 1-54
Model lor 11l 1-54
breakable AUTO 1-33
BUILD 1-35
device handling 1-13
device related A-109
diskette handling 1-13
DO 1-35
E (save changes and exit) 2-20
file handling 1-13
| (insert) 2-19
initialization 1-13
machine language file handling 1-14
nC (change) 2-21
nD (delete) 2-21
nKc (search and “kill”) 2-22

nSc (search) 2-22
Q (cancel and exit) 2-21
RESET A-115
X (extend line) 2-19
COMMON 2-76
COMMunicating
between two TRS-80's 1-52
with other computers 1-51
with mainframe 1-51
communications A-43
configuration A-87
console A-39
constants 2-28
CONV (CONV/CMD) 1-56
converting to integers 2-36, 2-41,
2-111, A-77
COPY 1-58
COs 2-78
CREATE 1-62
creating
direct-access files 2-54
filtered link A-108, A-109
sequential-access files 2-51
unfiltered link A-110
CSNG 2-79
CVD, CVI, CVS 2-80
cylinder 1-29, 1-71

D (display) 1-68

D notation 2-34

DATA 2-81

DATE 1-64

system 1-64
today's 1-64

DATES 2-82

DEBUG 1-65

activate 1-65
extended 1-65
high memory 1-66
microprocessor registers 1-66
flag registers 1-66
memory locations 1-67
PC register 1-67
register pairs 1-66

debug display 1-33

DEFDBL 2-83

DEFINT 2-83

DEFSNG 2-83

DEFSTR 2-83

DEF FN 2-84

2-97,

INDEX-2

DEF USR 2-85

DELETE 2-86

DEVICE 1-48,1-75

delay time 1-76

device section 1-75
drive section 1-75
driver 1-76

filter 1-76

status section 1-75
step rate 1-76
devices 1-10

logical 1-10

physical 1-10, A-88
devspec 1-10

DO (display output (video)) 1-10
+JL (job log) 1-10

=K| (keyboard input) 1-10
#PR (printer) 1-10

=8| (standard input) 1-10
+*S0 (standard output) 1-10
DIM 2-87

DIR 1-30, 1-79

partspec 1-79
direct-access files 2-54
accessing 2-56
creating 2-54

disk files 1-7, 2-51, A-77
disk ID's 1-29, 1-30

disk prompts 1-60
DESTINATION 1-60
SOURCE 1-80
SYSTEM 1-60

disk read/write utility 1-71
division 2-40

by zero A-78

DO 1-34, 1-35, 1-83

job control language 1-83
label 1-83

double precision 2-31
«drive 1-8, A-87

drivers 1-10

dummy number 2-4
dummy string 2-4

DUMP 1-86

dump-to-disk 1-44

E (save changes and exit) 2-20
E notation 2-34

EDIT 2-88

Electronic Mail Services 1-42
END 2-89

EOF 2-90
ERASE 2-91
ERL 2-82
ERR 2-93
ERRS$ 2-93
ERROR 2-94
error message 1-6, A-62, A-78
escape code seguence 1-55
EXP 2-95
exponentiation 2-40
expressions 2-26, 2-47
extended command descriptions
E (enter date) 1-72
(locate) 1-72
(next load block) 1-72
(printy 1-73
(type ASCII) 1-73
(compare) 1-74
W (word) 1-74
lextension 1-8

L
N
P
T
\

F (fill memory) 1-68
FIELD 2-96
file-for-file copy 1-30
file handling commands 1-13
filename 1-8
files

BASIC ASCIHl 1-56
combining A-23

data 1-56

fragmented 1-30
filespec 1-8

FILTER 1-88

phantom devspec 1-88
filters 1-10

FIX 2-97

FLOPPY/DCT A-102
hard disk installations A-102
floppy disk drive A-40
floppy drive @ 1-33
FOR/NEXT 2-88
FORMAT 1-26, 1-35, 1-89

1-72

erase all data from disk 1-89, 1-90

prepare a new disk 1-89
format prompts 1-90
FORMS 1-94
FORMS/FLT A-97

FRE 2-100

FREE 1-30, 1-97
functions 2-27, 2-47, 2-62
control A-45

INDEX-3

graphics A-45
keys 1-44
action 1-44
applications 1-44
text A-45

G (go to an address/execute) 1-69
GET 2-101

GOSUB 2-102

GOTO 2-103

graphics characters 1-50

H (hex modify) 1-69
hexadecimal value 1-69
vertical bars 1-69

HANDSHAKE 1-46, 1-48, 1-52

HERTZ50 A-117

hex byte representations 1-36

HEXS$ 2-104

hexadecimal value 1-42

| {insert) 2-19

| {(single-step execution) 1-69
IF ... THEN ... ELSE A-79, 2-104
initialization commands 1-13
INKEYS 2-106

INP 2-106

INPUT 107

INPUT# 2-108

INPUTS 2-109

INSTR 2-110

INT 2-112

integer 2-4

integers 2-30

J (jump) 1-70
JCL compiling A-12
advanced A-25
description and terms A-13
compile phase A-13
execution A-13
SYSTEM/JCL A-13
label A-13
logical operator A-14
token A-13, A-16
using logical operators A-26
job control language A-3
creating A-4
restrictions A-4
simple execution A-4
using labels A-24
JOBLOG A-93

keyboard A-40

KILL 2-112

KSM file 1-36

KSM/FLT 1-35, A-94
building a file A-94

LEFTS 2-113
LEN 2-114

LET 2-114
LIB 1-102

technician information 1-102
line 2-4

logical 1-37

physical 1-37
LINE INPUT 2-115
LINE INPUT# 2-116
LINK 1-103

device to a file 1-103
LIST 1-105, 2-117
LLIST 2-118
LOAD 1-107, 2-119

load module format 1-17
loading BASIC 2-9

loading the program 2-12
LOC 2-120

LOF 2121

LOG 2-122

LOC/CMD 1-108

hard disk installations 1-108
logical device 1-10

logical line 1-37

LPOS 2-123

LPRINT, LPRINT USING 2-123
LPRINT TAB 2-124

LRL 1-58, 1-62

LSET 2-124

MACROS A-5
alert A-6
comment A-5
conditional A-15
comment A-15
higher order logical A-15
logical A-15
merge A-15
termination A-15
execution A-5
//ABORT A-6
//ALERT A-6
//DELAY A-6
JEXIT A-7
//FLASH A-7

INDEX-4

JINPUT A-7
//KEYIN A7
/inumber A-11
//PAUSE A-8
//ISLEEP A-8
//STOP A-8
/J (triple slash) A-11
/IWAIT A9
keyboard A-5
nested /IF A-27
//INCLUDE A-28
pause/delay A-5
main memory usage 1-54
FIFO storage compartment 1-54
HIGH$ 1-54
marker, end of file 1-35
MEM 2-125
MEMDISK/DCT A-98
disable A-100
double density A-99
installing A-99
single density A-100
technical information A-102
MEMORY 1-109
HIGH$ 1-109
LOWS 1-109
memory map A-105
MENU 1-44
MERGE 2-126
MID$ (function 2-129
MID$ (statement) 2-128
mirror image backup 1-29, 1-30
MKDS$, MKI$, MKS$ 2-130
MOD flags 1-29
modem 1-50
multiplication 2-40

NAME 2-131

nC (change) 2-21

nD (delete) 2-21

Nested subroutines A-79
NEW 2-131

News and Information System 1-42
nKc (search and "kill") 2-22
non-ending loops 1-59
notations (BASIC) 2-3

nSc (search) 2-22

number 2-4

numeric operators 2-39, 2-43

O (return to TRSDOS Ready) 1-70
OCT$ 2-132

ON ERROR GOTO 2-132
ON...GOSUB 2-133
ON ... GOTO 2-134
O'nnnnn 2-3
OPEN 2-135
operating temperature A-41
operators 2-39
logical 2-44
numeric 2-39, 2-43
relational 2-43
string 2-43
OPTION BASE 2-136
options for loading BASIC 2-9
OuT 2-137
owner passwords 1-20

parameters 1-15
[parameters] 2-4
parentheses 2-45
partspec 1-9, 1-26, 1-56
"wildcard” mask ($) 1-9
.password 1-8
passwords 1-21
owner 1-21
user 1-21
PATCH 1-112
direct modify 1-113
memory load location 1-113
PATCH utility 1-35
pause transmission 1-48
PEEK 2-137
peripheral interfaces A-41
physical device 1-10
physical line 1-37
POKE 2-138
ports A-78
POS 2-138
power supply A-41
power-up configuration 1-33
PRINT 2-139
PRINT TAB A-79, 2-141
PRINT USING 2-142
print zones A-77
PRINT @ A-79, 2-145
PRINT# 2-146
printing
double-precision numbers A-78
single-precision numbers A-78
protection passwords 1-20
PURGE 1-117
PUT 2-147

INDEX-5

Q (cancel and exit) 2-21
Q (port)y 1-70

quick reference card 1-44
quick reference label 1-49

R (register pair) 1-70
register pair codes 1-70
RANDOM 2-148

READ 2-149

receiving large files

from another computer 1-54
relational operators 2-43
REM 2-150

REMOVE 1-119
user-created device 1-119
RENAME 1-120

RENUM 2-151

REPAIR (REPAIR/CMD) 1-122
reserved words 2-29, A-81
RESET 1-123

improperly closed files 1-123
RESTORE 2-152

RESUME 2-153
resume transmission 1-48
RETURN 2-154

reverse video A-47
RIGHT$ 2-154

RND 2-155

ROM subroutines A-77
rounding 2-36, 2-37
ROUTE 1-125

ROW 2-156

RS-232C 1-130
communications line 1-42
modem 1-130

serial printer 1-130
technical information 1-131
RSET 2-157

RUN 1-127, 2-157

S (full screen mode) 1-71
SAVE 2-158
saving the program 2-11
screen print 1-7

sector 1-71
sequential-access files 2-51
creating 2-51
updating 2-53

SET 1-128

driver program 1-128
fiiter program 1-128

SETCOM 1-130
SETKI 1-133
SGN 2-159
simple variables 2-29
SIN 2-160
SOUND 2-160
SPACES$ 2-161
SPC 2-162
special characters A-58
SPOOL 1-134
disk buffer 1-134
memory buffer 1-134
output buffer 1-134
SQR 2-162
statements 2-26, 2-60
static electricity A-62
STOP 2-163
string 2-4
string operator 2-42
string relations 2-43
strings 2-32
string space A-78
STR$ 2-164
STRINGS 2-164
subscripted variables 2-29
substitution fields A-20
subtraction 2-42
SWAP 2-165
symbol
DC1 1-48
resume transmission 1-48
DC2 1-48
*FR device ON 1-48
DC3 1-48
pause transmission 1-48
DC4 1-48
+FR device OFF 1-48
using % symbol A-29
syntax 1-15, 2-4
SYSGEN 1-137
configuration file 1-137
sysgened configuration 1-33
SYSTEM 1-139, 2-166

ALIVE 1-140
BLINK 1-140
BREAK 1-140
BSTEP 1-140
DATE 1-140
DRIVE 1-141
FAST 1-142

GRAPHIC 1-142

INDEX-6

HERTZ 1-142
RESTORE 1-142
SLOW 1-143
SMOOTH 1-143
SYSRES 1-143
SYSTEM 1-143
TIME 1-144
TRACE 1-144
TYPE 1-144

TAN 2-167
TAPE 100 1-145

Model 100 computer 1-145

TIME 1-146
clock 1-146
TIME$ 2-168

Timesharing Systems 1-42
TOF 1-147
TROFF, TRON 2-169
truncation 2-41, 2-97
TRSDOS 1-5
abbreviations 1-6
application programs 1-6
date 1-6
notations 1-5

terms 1-5
command 1-5
devspec 1-5
disk 1-6
disk ID 1-6, 1-29
diskette 1-5
filespec 1-5
/O 1-6

parameters 1-5

type declaration tags 2-33, 2-35

ltag 2-33
#tag 2-34
D notation 2-34
E notation 2-34

U (update) 1-71

updating sequential-access files 2-53

user passwords 1-21
USING
//ASSIGN A-15

/l. Comment and //QUIT A-19

/MF, //END, /ELSE A-15
//SET and /RESET A-15
USR 2-170
utilities 1-14

VAL 2-173

variable names A-77, 2-29
variables 2-28

VARPTR 2-174

VERIFY 1-148

video display A-39

WAIT 2-177

WHILE ... WEND 2-178
WIDTH 2-179

wildcard mask (%) 1-9
WRITE 2-181

WRITE# 2-182

X (extend line) 2-19
X (return) 1-17
Xnnnn 2-3

INDEX-7

CUSTOM MANUFACTURED FOR RADIO SHACK,
A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U. K.
91 KURRAJONG AVENUE PARC INDUSTRIEL BILSTON ROAD WEDNESBURY
MOUNT DRUITT. N.S.W. 2770 5140 NANINNE (NAMUR) WEST MIDLANDS WS10 7JN

7/85-TM 874-9747 Printed in U.S.A.

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf
	335.pdf
	336.pdf
	337.pdf
	338.pdf
	339.pdf
	340.pdf
	341.pdf
	342.pdf
	343.pdf
	344.pdf
	345.pdf
	346.pdf
	347.pdf
	348.pdf
	349.pdf
	350.pdf
	351.pdf
	352.pdf
	353.pdf
	354.pdf
	355.pdf
	356.pdf
	357.pdf
	358.pdf
	359.pdf
	360.pdf
	361.pdf
	362.pdf
	363.pdf
	364.pdf
	365.pdf
	366.pdf
	367.pdf
	368.pdf
	369.pdf
	370.pdf
	371.pdf
	372.pdf
	373.pdf
	374.pdf
	375.pdf
	376.pdf
	377.pdf
	378.pdf
	379.pdf
	380.pdf
	381.pdf
	382.pdf
	383.pdf
	384.pdf
	385.pdf
	386.pdf
	387.pdf
	388.pdf
	389.pdf
	390.pdf
	391.pdf
	392.pdf
	393.pdf
	394.pdf
	395.pdf
	396.pdf
	397.pdf
	398.pdf
	399.pdf
	400.pdf
	401.pdf
	402.pdf
	403.pdf
	404.pdf
	405.pdf
	406.pdf
	407.pdf
	408.pdf
	409.pdf
	410.pdf
	411.pdf
	412.pdf
	413.pdf
	414.pdf
	415.pdf
	416.pdf
	417.pdf
	418.pdf
	419.pdf
	420.pdf
	421.pdf
	422.pdf
	423.pdf
	424.pdf
	425.pdf
	426.pdf
	427.pdf
	428.pdf
	429.pdf
	430.pdf
	431.pdf
	432.pdf
	433.pdf
	434.pdf
	435.pdf
	436.pdf
	437.pdf
	438.pdf
	439.pdf
	440.pdf
	441.pdf
	442.pdf
	443.pdf
	444.pdf
	445.pdf
	446.pdf
	447.pdf
	448.pdf
	449.pdf
	450.pdf
	451.pdf
	452.pdf
	453.pdf
	454.pdf
	455.pdf
	456.pdf
	457.pdf
	458.pdf
	459.pdf
	460.pdf
	461.pdf
	462.pdf
	463.pdf
	464.pdf
	465.pdf
	466.pdf
	467.pdf
	468.pdf
	469.pdf
	470.pdf
	471.pdf

